OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 32, Iss. 30 — Oct. 20, 1993
  • pp: 6082–6089

Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane–air diffusion flame

J. Houston Miller, Salma Elreedy, Bijan Ahvazi, F. Woldu, and P. Hassanzadeh  »View Author Affiliations

Applied Optics, Vol. 32, Issue 30, pp. 6082-6089 (1993)

View Full Text Article

Enhanced HTML    Acrobat PDF (1062 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The application of tunable diode lasers for in situ diagnostics in laminar hydrocarbon diffusion flames is demonstrated. By the use of both direct-absorption and wavelength-modulation (second-derivative) techniques, carbon monoxide concentrations and the local flame temperature are determined for a laminar methane–air diffusion flame supported on a Wolfhard–Parker slot burner. In both cases the results are found to be in excellent agreement with prior measurements of these quantities using both probe and optical techniques.

© 1993 Optical Society of America

Original Manuscript: December 16, 1991
Published: October 20, 1993

J. Houston Miller, Salma Elreedy, Bijan Ahvazi, F. Woldu, and P. Hassanzadeh, "Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane–air diffusion flame," Appl. Opt. 32, 6082-6089 (1993)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Yetter, F. L. Dryer, H. Rabtiz, “Complications of one-step kinetics for moist CO oxidation,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 749–760.
  2. R. E. Mitchell, A. F. Sarofim, L. A. Clomburg, “Experimental and numerical investigation confined laminar diffusion flames,” Combust. Flame 37, 227–244 (1980). [CrossRef]
  3. W. M. Pitts, “A long range plan for a research project on carbon monoxide production and prediction,” Natl. Inst. Stand. Technol. Int. Rep. 89-4185 (1989).
  4. K. Brezinsky, “High temperature oxidation of aromatic hydrocarbons,” Prog. Energy Combust. Sci. 12, 1–24 (1986). [CrossRef]
  5. P. J. H. Tjossem, K. C. Smyth, “Multiphoton excitation spectroscopy of the B 1∑+ and C 1∑+ Rydberg States of CO,” J. Chem. Phys. 91, 2041–2048 (1989). [CrossRef]
  6. A. Hamins, J. H. Miller, George Washington University, Washington, D.C. 20052 (personal communication, 1989).
  7. K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame 62, 157–181 (1985). [CrossRef]
  8. R. J. Santoro, Pennsylvania State University, University Park, Pa. 16801 (personal communication, 1989).
  9. K. C. Smyth, P. J. H. Tjossem, A. Hamins, J. H. Miller, “Concentration measurements of OH and equilibrium analysis,” Combust. Flame 79, 366–380 (1990). [CrossRef]
  10. G. Guelachvili, K. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).
  11. S. M. Schoenung, R. K. Hanson, “Laser absorption sampling probes for temporally and spatially resolved combustion measurements,” Appl. Optics 21, 1767–1771 (1981). [CrossRef]
  12. R. K. Hanson, P. L. Varghese, S. M. Schoenung, P. K. Falcone, “Absorption spectroscopy of combustion gases using a tunable IR diode laser,” in Laser Probes for Combustion Chemistry, No. 134 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1980), pp. 413–426. [CrossRef]
  13. C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975).
  14. P. L. Varghese, R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981). [CrossRef]
  15. J. Reid, D. Labrie, “Second harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  16. J. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992). [CrossRef] [PubMed]
  17. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965). [CrossRef]
  18. J. A. Silver, D. S. Bomse, A. C. Stanton, “Diode laser measurements of trace concentrations of ammonia in an entrained flow coal reactor,” Appl. Opt. 30, 1505–1511 (1991). [CrossRef] [PubMed]
  19. G. T. T. Tejwani, P. Varanasi, “Calculation of collisionally broadened linewidths in the infrared bands of methane,” J. Chem. Phys. 55, 1075–1083 (1971). [CrossRef]
  20. K. C. Smyth, National Institute of Standards and Technology, Gaithersburg, Md. 20838 (personal communication, 1990).
  21. R. K. Hanson, P. K. Falcone, “Temperature measurement technique for high-temperature gases using a tunable diode laser,” Appl. Opt. 17, 2477–2480 (1978). [CrossRef] [PubMed]
  22. X. Ouyang, P. L. Varghese, “Selection of spectral lines for combustion diagnostics,” Appl. Opt. 29, 4884–4890 (1990). [CrossRef] [PubMed]
  23. R. W. Bilger, “Reaction rates in diffusion flames,” Combust. Flame 30, 277–284 (1977). [CrossRef]
  24. R. W. Bilger, “Turbulent diffusion flames,” Annu. Rev. Fluid Mech. 21, 101–135 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited