OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 32, Iss. 30 — Oct. 20, 1993
  • pp: 6090–6103

Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows

Louis C. Philippe and Ronald K. Hanson  »View Author Affiliations

Applied Optics, Vol. 32, Issue 30, pp. 6090-6103 (1993)

View Full Text Article

Enhanced HTML    Acrobat PDF (2011 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wavelength modulation at 10 MHz of an AlGaAs laser diode, superposed on repetitive linear scans of wavelength, is applied to measure second-harmonic absorption line shapes of oxygen in the A band. Theoretical expressions of the harmonic line shapes, including the effect of laser amplitude modulation and varying modulation depth, are presented. A least-squares fit of the experimental line shapes to theoretical second-harmonic line shapes permits simultaneous determination of the temperature and the pressure. The use of high-repetition-rate (10-kHz) linear scans of the studied wavelength region permits application of the technique to high-speed unidimensional transient flows generated in a shock tube; velocity is derived from the Doppler shift of the absorption profiles.

© 1993 Optical Society of America

Original Manuscript: December 23, 1991
Published: October 20, 1993

Louis C. Philippe and Ronald K. Hanson, "Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows," Appl. Opt. 32, 6090-6103 (1993)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. C. Rea, R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464 (1988). [CrossRef] [PubMed]
  2. A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991). [CrossRef] [PubMed]
  3. M. P. Lee, P. H. Paul, R. K. Hanson, “Laser-fluorescence imaging of O2 in combustion flows using an ArF laser,” Opt. Lett. 11, 7–9 (1986). [CrossRef] [PubMed]
  4. R. Miles, W. Lempert, “Two-dimensional measurement of density, velocity, and temperature in turbulent high-speed air flows by UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990). [CrossRef]
  5. M. D. DiRosa, A. Y. Chang, D. F. Davidson, R. K. Hanson, “CW laser strategies for multi-parameter measurements of high speed flows containing either NO or O2,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.
  6. M. Kroll, J. A. McClintock, O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465–1467 (1987). [CrossRef]
  7. H. Kanamori, M. Momona, K. Sakurai, “Diode laser spectroscopy of the atmospheric oxygen band (b1∑g+–X3∑g−),” Can. J. Phys. 68, 313–316 (1990). [CrossRef]
  8. D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1322 (1990). [CrossRef] [PubMed]
  9. C. L. Korb, C. Y. Weng, “Differential absorption lidar technique for measurement of the atmospheric pressure profile,” Appl. Opt. 22, 3759–3770 (1983). [CrossRef] [PubMed]
  10. K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987). [CrossRef]
  11. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Picket, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987). [CrossRef] [PubMed]
  12. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  13. L. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of approaches to modulation spectroscopy with GaAlAs semiconductor lasers: application to water vapor,” Appl. Opt. 27, 2071–2077 (1988). [CrossRef] [PubMed]
  14. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]
  15. G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy—theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983). [CrossRef]
  16. W. Lenth, “Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductor lasers,” Opt. Lett. 8, 575–577 (1983). [CrossRef] [PubMed]
  17. J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992). [CrossRef] [PubMed]
  18. D. T. Cassidy, J. Reid, “Harmonic detection with tunable diode lasers—two-tone modulation,” Appl. Phys. B 29, 279–285 (1982). [CrossRef]
  19. L. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989). [CrossRef]
  20. D. E. Cooper, R. E. Warren, “Two-tone optical heterodyne spectroscopy with diode lasers: theory of lineshapes and experimental results,” J. Opt. Soc. Am. B 4, 470–480 (1987). [CrossRef]
  21. J. M. Osterwalder, B. J. Rickett, “Frequency modulation of GaAlAs injection lasers at microwave frequency rates,” IEEE J. Quantum Electron. QE-16, 250–252 (1980). [CrossRef]
  22. D. T. Cassidy, J. Reid, “High-sensitivity detection of trace gases using sweep integration and tunable diode lasers,” Appl. Opt. 21, 2527–2530 (1982). [CrossRef] [PubMed]
  23. J. E. Hayward, D. T. Cassidy, J. Reid, “High-sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989). [CrossRef]
  24. J. A. Silver, A. C. Stanton, “Airborne measurements of humidity using a single-mode Pb-salt diode laser,” Appl. Opt. 26, 2558–2566 (1987). [CrossRef] [PubMed]
  25. W. Lenth, M. Gehtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985). [CrossRef]
  26. G. Cazzoli, L. Dore, “Lineshape measurements of rotational lines in the millimeter-wave region by second harmonic detection,” J. Mol. Spectrosc. 141, 49–58 (1990). [CrossRef]
  27. P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983). [CrossRef]
  28. S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982). [CrossRef]
  29. A. G. Gaydon, I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, New York, 1963).
  30. K. J. Ritter, “A high resolution spectroscopic study of absorption line profiles in the A band of molecular oxygen,” Ph.D. dissertation (University of Maryland, College Park, Maryland, 1986).
  31. L. C. Philippe, R. K. Hanson, “Tunable diode laser absorption sensor for temperature and velocity measurements of O2 in air flows,” presented at the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, Nev., 7–10 January 1991.
  32. L. C. Philippe, R. K. Hanson, “Laser absorption mass flux sensor for high speed air flows,” Opt. Lett. 16, 2002–2004 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited