OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 32, Iss. 30 — Oct. 20, 1993
  • pp: 6104–6116

Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser

M. P. Arroyo and R. K. Hanson  »View Author Affiliations


Applied Optics, Vol. 32, Issue 30, pp. 6104-6116 (1993)
http://dx.doi.org/10.1364/AO.32.006104


View Full Text Article

Enhanced HTML    Acrobat PDF (1583 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tunable diode laser diagnostic based on spectrally resolved laser absorption has been developed to detect water vapor. The system uses a distributed feedback InGaAsP diode laser, emitting at ~ 1.38 μm. The diode laser is tuned in wavelength by modulation of the current, resulting in 1-cm−1 tuning at 80-Hz repetition rate. The directly measured absorption spectra yield values for water-vapor concentration and temperature, as well as a collision-broadening line shape. To our knowledge, we accurately determined required data for H2O line strengths and self-broadening coefficients for several spectral lines in a static cell filled with pure water vapor. The temperature and concentration of the water vapor present in laboratory room air and in the postflame gases above a methane–air flat flame burner have also been measured. These results agree well with calculated values and independent measurements.

© 1993 Optical Society of America

History
Original Manuscript: September 14, 1992
Published: October 20, 1993

Citation
M. P. Arroyo and R. K. Hanson, "Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser," Appl. Opt. 32, 6104-6116 (1993)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-30-6104


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. C. Rea, R. K. Hanson, “Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion,” Appl. Opt. 27, 4454–4464(1988). [CrossRef] [PubMed]
  2. A. Y. Chang, M. D. DiRosa, D. F. Davidson, R. K. Hanson, “Rapid tuning cw laser technique for measurements of gas velocity, temperature, pressure, density, and mass flux using NO,” Appl. Opt. 30, 3011–3022 (1991). [CrossRef] [PubMed]
  3. L. C. Philippe, R. K. Hanson, “Tunable diode laser absorption sensor for temperature and velocity measurements of O2 in air flows,” in Technical Digest, Twenty-Ninth Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper 91-0360.
  4. D. T. Cassidy, “Trace gas detection using 1.3-μm InGaAsP diode laser transmitter modules,” Appl. Opt. 27, 610–614 (1988). [CrossRef] [PubMed]
  5. D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990). [CrossRef] [PubMed]
  6. W. Length, H. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985). [CrossRef]
  7. L.-G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989). [CrossRef]
  8. N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt. 31, 3409–3415 (1992). [CrossRef] [PubMed]
  9. H. Sasada, K. Yamada, “Calibration lines of HCN in the 1.5-μm region,” Appl. Opt. 29, 3535–3547 (1990). [CrossRef] [PubMed]
  10. D. T. Cassidy, L. J. Bonnell, “Trace gas detection with short-external-cavity InGaAsP diode laser transmitter operating at 1.58 μm,” Appl. Opt. 27, 2688–2693 (1988). [CrossRef] [PubMed]
  11. A. C. Stanton, J. A. Silver, “Measurements in the HCL 3 ← 0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988). [CrossRef] [PubMed]
  12. C. B. Carlisle, D. E. Cooper, “Tunable diode laser frequency modulation spectroscopy through an optical fiber: high sensitivity detection of water vapor,” Appl. Phys. Lett. 56, 805–807 (1990). [CrossRef]
  13. A. C. Stanton, D. S. Bomse, J. A. Silver, “A nonintrusive diagnostic for water vapor in high temperature flow fields,” Tech. Rep. R90-01, for National Aero-Space Plane Joint Program Office AFSC/NAC (Southwest Sciences, Inc., Santa Fe, N.M., 1991).
  14. M. P. Arroyo, R. K. Hanson, “Tunable diode laser absorption technique for detection of water vapor in aerodynamic flows,” in Technical Digest, Thirtieth Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992) paper 92-0510.
  15. hitran data base, 1992 ed. (Digital Product Section, National Climatic Center, National Oceanic and Atmospheric Administration, Federal Building, Asheville, N. C. 28801).
  16. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1945).
  17. L. S. Rothmann, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran Database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987). [CrossRef]
  18. C. Delaye, J.-M. Hartmann, J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2, and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989). [CrossRef] [PubMed]
  19. R. A. Toth, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, Calif. 91109 (personal communication, 1992).
  20. J. M. Flaud, C. Camy-Peyret, J. P. Maillard, “Higher rovibrational levels of H2O deduced from high resolution oxygen-hydrogen flame spectra between 2800–6200 cm−1,” Mol. Phys. 32, 499–521 (1976); C. Camy-Peyret, J. M. Flaud, J. P. Maillard, “Higher rovibrational levels of H2O deduced from high resolution oxygen-hydrogen flame spectra between 6200 and 9100 cm−1,” Mol. Phys. 33, 1641–1650 (1977). [CrossRef]
  21. B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989); “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989). [CrossRef]
  22. B. F. Ventrudo, D. T. Cassidy, “Operating characteristics of a tunable diode laser absorption spectrometer using short-external-cavity and DFB laser diodes,” Appl. Opt. 29, 5007–5013 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited