OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 32, Iss. 31 — Nov. 1, 1993
  • pp: 6256–6263

Automated spatially scanning ellipsometer for retardation measurements of transparent materials

J. E. Hayden and S. D. Jacobs  »View Author Affiliations

Applied Optics, Vol. 32, Issue 31, pp. 6256-6263 (1993)

View Full Text Article

Enhanced HTML    Acrobat PDF (1204 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A highly sensitive and automated technique has been developed for measuring the birefringence in transparent optical materials. The spatially scanning modulated transmission ellipsometer maps the birefringence of a transparent material by probing it with a polarization-modulated He–Ne laser beam. Computer-controlled voltage biasing of a Pockels cell permits self-calibration and background subtraction of the system retardance. The technique is capable of resolving differential retardances as small as 0.1 nm (λ/6328) through a range of ±λ/2, where λ = 632.8 nm. Samples typically range in size from 50 μm to 10 cm in diameter within the sample plane and as much as 400 mm along the optical axis.

© 1993 Optical Society of America

Original Manuscript: April 17, 1992
Published: November 1, 1993

J. E. Hayden and S. D. Jacobs, "Automated spatially scanning ellipsometer for retardation measurements of transparent materials," Appl. Opt. 32, 6256-6263 (1993)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Nakadate, “High precision retardation measurement using phase detection of Young’s fringes,” Appl. Opt. 29, 242–246 (1990). [CrossRef] [PubMed]
  2. S. Nakadate, “Phase detection of equidistant fringes for highly sensitive optical sensing. I. Principle and error analyses,” J. Opt. Soc. Am. A 5, 1258–1264 (1988). [CrossRef]
  3. S. Nakadate, “Phase detection of equidistant fringes for highly sensitive optical sensing. II. Experiments,” J. Opt. Soc. Am. A 5, 1265–1269 (1988). [CrossRef]
  4. H. G. Jerrard, “Optical compensators for measurement of elliptical polarization,” J. Opt. Soc. Am. 38, 35–59 (1948). [CrossRef]
  5. G. Bruhat, Optique (Cours de Physique Générale), 5th ed., (Masson, Paris, 1959).
  6. F. G. Major, “Heterodyne polarimetry technique for complete amplitude scattering matrix for radiation,” Appl. Opt. 29, 5193–5197 (1990). [CrossRef] [PubMed]
  7. L. Yao, Z. Zhiyao, W. Runwen, “Optical heterodyne measurement of the phase retardation of a quarter-wave plate,” Opt. Lett. 13, 553–555 (1988). [CrossRef] [PubMed]
  8. C. Lin, C. Chou, K. Chang, “Real time interferometric ellipsometry with optical heterodyne and phase lock-in techniques,” Appl. Opt. 29, 5159–5162 (1990). [CrossRef] [PubMed]
  9. S. D. Jacobs, J. E. Hayden, A. L. Hrycin, “Practical measurements of adhesion and strain for improved optical coatings,” in Optical Thin Films II: New Developments, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.678, 66–78 (1986).
  10. Y. Shindo, H. Hanabusa, “Highly sensitive instrument for measuring optical birefringence,” Polym. Commun. 24, 240–244 (1983).
  11. Y. Shindo, R. Takigaura, “An improved highly sensitive instrument for measuring optical birefringence,” Polym. Commun. 25, 378–380 (1984).
  12. G. E. Jellison, F. A. Modine, “Two-channel polarization modulation ellipsometer,” Appl. Opt. 29, 959–974 (1990). [CrossRef] [PubMed]
  13. H. Takasaki, “Photoelectric measurement of polarized light by means of an ADP polarization modulator. I. Photoelectric polarimeter,” J. Opt. Soc. Am. 51, 462–463 (1961). [CrossRef]
  14. K. H. Jackson, P. Zhou, E. Jones, G. L. Harris, M. G. Spencer, “The measurement of stress in silicon carbide using the photoelastic effect,” in Proceedings of the First International Conference on Amorphous and Crystalline Silicon Carbide and Related Materials, G. L. Harris, C. Y.-W. Yang, eds. (Springer-Verlag, Berlin, 1989), Vol. 34, pp. 129–132. [CrossRef]
  15. K. H. Jackson, P. Z. Zhou, E. Jones, G. L. Harris, M. G. Spencer, “Measurement of stress in semiconductor materials using the photoelastic effect,” in Conference on Lasers and Electro-Optics, Vol. 7 of OSA 1988 Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 266.
  16. P. S. Hauge, F. H. Dill, “Design and operation of ETA, an automated ellipsometer,” IBM J. Res. Dev. 17, 472 (1973). [CrossRef]
  17. M. E. Pedinoff, M. Braunstein, O. M. Stafsudd, “Modulated light ellipsometry at 10.6 μm,” in Optical Polarimetry: Instrumentation and Applications, R. M. A. Azzam, D. L. Coffeen, eds., Proc. Soc. Photo-Opt. Instrum. Eng.112, 74–81 (1977).
  18. K. A. Cerqua, J. E. Hayden, W. C. LaCourse, “Stress measurements in solgel films,” J. Non-Cryst. Solids 100, 471–478(1988). [CrossRef]
  19. R. S. Craxton, R. L. McCrory, J. M. Soures, “Progress in laser fusion.” Sci. Am. 255, 68–79 (1986). [CrossRef]
  20. J. Greener, R. Kesel, B. A. Contestable, “The birefringence problem in optical disk substrates: a modeling approach,” AIChE J. 35, 449–458 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited