OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 32, Iss. 31 — Nov. 1, 1993
  • pp: 6347–6358

Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements

Randall N. Paschall and David J. Anderson  »View Author Affiliations


Applied Optics, Vol. 32, Issue 31, pp. 6347-6358 (1993)
http://dx.doi.org/10.1364/AO.32.006347


View Full Text Article

Enhanced HTML    Acrobat PDF (1511 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a technique for controlling a ground-based deformable mirror adaptive optics telescope to compensate for optical wave-front phase distortion induced by a turbulent atmosphere. Specifically, a predictive linear quadratic Gaussian (LQG) controller is designed that generates commanded control voltages to the mirror actuators based on a set of time-delayed wave-front slope measurements from a Hartmann-type wave-front sensor.

© 1993 Optical Society of America

History
Original Manuscript: June 22, 1992
Published: November 1, 1993

Citation
Randall N. Paschall and David J. Anderson, "Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements," Appl. Opt. 32, 6347-6358 (1993)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-31-6347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Hardy, J. E. Lefebvre, C. L. Koliopoulos, “Real-time atmospheric compensation,” J. Opt. Soc. Am. 67, 360–369 (1977). [CrossRef]
  2. D. J. Anderson, “LQG control of a deformable mirror adaptive optics system with time-delayed measurements,” M.S. thesis, AFIT/GE/ENG/91D-03 [School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base, Ohio, 1991].
  3. M. A. Von Bokern, “Design of a linear quadratic Gaussian control law for an adaptive optics system,” M.S. thesis, AFIT/GE/ENG/90D-65 [School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base, Ohio, 1990].
  4. C. B. Hogge, R. R. Butts, “Frequency spectra for the geometric representation of wavefront distortions due to atmospheric turbulence,” IEEE Trans. Antennas Propag. AP-24, 144–154 (1976). [CrossRef]
  5. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  6. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990). [CrossRef]
  7. R. Cubalchini, “Modal wave-front estimation from phase derivative measurements,” J. Opt. Soc. Am. 69, 972–977 (1979). [CrossRef]
  8. G. A. Tyler, D. L. Fried, J. F. Belsher, “Adaptive optics technology and atmospheric turbulence correction, Volume I: Technical descriptions,” Contract F2960182C0104 (The Optical Sciences Company, Placentia, Calif., 1988).
  9. J. Y. Wang, “Phase-compensated optical beam propagation through atmospheric turbulence,” Appl. Opt. 17, 2580–2590 (1978). [PubMed]
  10. J. Y. Wang, J. K. Markey, “Modal compensation of atmospheric turbulence phase distortion,” J. Opt. Soc. Am. 68, 78–87 (1978). [CrossRef]
  11. “97-Channel, low-voltage, electrodistortive mirror: operation manual,” Tech. Rep. (Litton Itek Optical Systems, Lexington, Mass., 1988).
  12. P. S. Maybeck, Stochastic Models, Estimation, and Control (Academic, New York, 1979), Vol. 1.
  13. S. F. Clifford, “The classical theory of wave propagation in a turbulent medium,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed., Vol. 25 of Topics in Applied Physics (Springer-Verlag, New York, 1978). [CrossRef]
  14. B. M. Welsh, C. S. Gardner, “Performance analysis of adaptive optics systems using laser guide stars and slope sensors,” Technical Report (University of Illinois, Champaign-Urbana, Ill., 1989).
  15. M. Athans, P. Falb, Optimal Control (McGraw-Hill, New York, 1966).
  16. H. Kwakernaak, R. Sivan, Linear Optimal Control Systems (Wiley, New York, 1972).
  17. P. S. Maybeck, Stochastic Models, Estimation, and Control (Academic, New York, 1982), Vol. 3.
  18. R. G. Miller, “Vector space approach for modeling a Hartmann wavefront sensor,” M.S. thesis, AFIT/GE/ENG/89D-33 [School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base, Ohio, 1989].
  19. S. H. Musick, N. A. Carlson, “User’s manual for a multimode simulation for optimal filter evaluation (MSOFE), Contract F3361586C1047 (Integrity Systems, Incorporated, Winchester, Mass., 1990).
  20. D. L. Kleinman, S. Baron, W. H. Levison, “An optimal control model of human response part I: Theory and validation,” Automatica 6, 357–369 (1970). [CrossRef]
  21. D. L. Kleinman, “Optimal control of linear systems with time-delay and observation noise,” IEEE Trans. Autom. Control AC-14, 524–527 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited