OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 32, Iss. 36 — Dec. 20, 1993
  • pp: 7479–7483

Temperature dependence of water vapor absorption coefficients for CO2 differential absorption lidars

Avishai Ben-David  »View Author Affiliations

Applied Optics, Vol. 32, Issue 36, pp. 7479-7483 (1993)

View Full Text Article

Enhanced HTML    Acrobat PDF (571 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A temperature correction of water vapor differential absorption coefficients for the CO2 transition line pairs (10R20, 10R18) and (10R20, 10R22) for temperatures between −0.5 °C and 20 °C is computed, with a reference temperature of 27 °C, from medium-range CO2 lidar field measurements. The empirical temperature correction, X(T), is fitted with the polynomial X(T) = a0 + a1 × T + a2 × T2. For the transition line pair (10R20, 10R18) the temperature dependence ranges from 1.62%/°C to 3.47%/°C, and the temperature correction for the transition line pair (10R20, 10R22) ranges from 1.32%/°C to 2.43%/°C.

© 1993 Optical Society of America

Original Manuscript: April 1, 1993
Published: December 20, 1993

Avishai Ben-David, "Temperature dependence of water vapor absorption coefficients for CO2 differential absorption lidars," Appl. Opt. 32, 7479-7483 (1993)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 279–319 (1990). [CrossRef]
  2. W. B. Grant, “Water vapor absorption coefficients in the 8–13-μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990). [CrossRef] [PubMed]
  3. G. L. Loper, M. A. O’Neill, J. A. Gelbwachs, “Water-vapor continuum CO2 laser absorption spectra between 27 °C and −10 °C,” Appl. Opt. 22, 3701–3710 (1983). [CrossRef] [PubMed]
  4. J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window,” Infrared Phys. 27, 63–120 (1987). [CrossRef]
  5. D. B. Cohn, T. A. Watson, T. P. Moser, J. A. Fox, C. R. Swim, “Wavelength agile high repetition rate CO2 TEA laser,” in Proceedings of the Third International Defence Research Agency/National Aeronautics and Space Administration Conference on Long-Life CO2 Laser Technology, D. V. Willets, M. R. Harris, eds. (British Crown, Malvern, UK, 1992), pp. 221–232.
  6. J. Hinderling, M. W. Sigrist, F. K. Kneubuhl, “Pure rotational transitions of H2O molecules in the 8–14 μm atmospheric window,” Infrared Phys. 25, 491–496 (1985). [CrossRef]
  7. M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water vapor absorption of carbon dioxide laser radiation,” Appl. Opt. 15, 2480–2488 (1976). [CrossRef] [PubMed]
  8. J. C. Peterson, “A study of water vapor absorption at CO2 laser frequencies using a differential spectrophone and white cell,” Ph.D. dissertation (Ohio State University, Columbus, Ohio, 1978).
  9. R. M. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL atmospheric absorption line parameters compilation,” AFCRL Rep. TR-73-0096 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1973).
  10. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited