OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 32, Iss. 6 — Feb. 20, 1993
  • pp: 847–856

Tunable 1.7-μm laser spectrometer for optical absorption measurements of CH4, C2H4, and high-temperature HCl

Mohan Vaidyanathan and Dennis K. Killinger  »View Author Affiliations

Applied Optics, Vol. 32, Issue 6, pp. 847-856 (1993)

View Full Text Article

Enhanced HTML    Acrobat PDF (1385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A tunable 1.7-μm cw F2+-center laser spectrometer system that is continuously tunable from 1.43 to 1.78 μm in wavelength and has a spectral linewidth (FWHM) of 0.07 cm−1 is developed. This system is used to measure the 2–0 rotational-vibrational absorption line profiles of hydrogen chloride (HCl) at high temperatures, the Boltzmann thermal equilibrium temperature, and to determine the extent of potential interference or overlap of the HCl lines with those that are due to hot water vapor. As a demonstration of the utility of the laser spectrometer system, it is also used to measure the spectra of methane (CH4) and ethylene (C2H4) near 1.65 μm, and is routed through a fiber-optic cable to a remote site to detect a CH4 plume.

© 1993 Optical Society of America

Original Manuscript: July 2, 1992
Published: February 20, 1993

Mohan Vaidyanathan and Dennis K. Killinger, "Tunable 1.7-μm laser spectrometer for optical absorption measurements of CH4, C2H4, and high-temperature HCl," Appl. Opt. 32, 847-856 (1993)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Zander, “Recent observations of HF and HCl in the upper atmosphere,” Geophys. Res. Lett. 8, 413–416 (1981). [CrossRef]
  2. M. J. Molina, F. S. Rowland, “Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone,” Nature (London) 249, 810–812 (1974). [CrossRef]
  3. G. Smolinsky, R. P. Chang, T. M. Mayer, “Plasma etching of III-V semiconductor materials and their oxides,” J. Vac. Sci. Technol. 18, 12–16 (1981). [CrossRef]
  4. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barge, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987). [CrossRef] [PubMed]
  5. L. S. Rothman, A. Goldman, J. R. Gillis, R. H. Tipping, L. R. Brown, J. S. Margolis, A. G. Maki, L. D. G. Young, “AFGL trace gas compilation: 1980 version,” Appl. Opt. 20, 1323–1328 (1981). [CrossRef] [PubMed]
  6. R. A. Toth, R. H. Hunt, E. K. Plyler, “Line strengths, linewidths, and dipole moment function for HCl,” J. Mol. Spectrosc. 35, 110–126 (1970). [CrossRef]
  7. J. H. Jaffe, S. Kimel, M. A. Hirshfeld, “Refraction spectrum in gases in the infrared intensities and widths of lines in the 2–0 band of HCl,” Can J. Phys. 40, 113–121 (1962). [CrossRef]
  8. W. S. Benedict, R. Herman, G. E. Moore, “Infrared line and band strengths and dipole moment function in HCl and DCl,” J. Chem. Phys. 26, 1671–1677 (1957). [CrossRef]
  9. H. Goldring, W. Benesch, “Widths of HCl overtone lines at various temperatures,” Can. J. Phys. 40, 1801–1813 (1962). [CrossRef]
  10. A. S. Pine, A. Fried, J. W. Elkins, “Spectral intensities in the fundamental bands of HF and HCl,” J. Mol. Spectrosc. 109, 30–45 (1985). [CrossRef]
  11. A. C. Stanton, J. A. Silver, “Measurements in the HCl 3–0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988). [CrossRef] [PubMed]
  12. J. Gelfand, M. Zughul, H. Rabitz, C. J. Han, “Absorption intensities for the 4–0 through 7–0 overtone bands of HCl,” J. Quantum. Radiat. Transfer 26, 303–305 (1981). [CrossRef]
  13. K. V. Reddy, “High resolution measurement of HCl overtone vibration-rotation bands by intracavity dye laser techniques,” J. Mol. Spectrosc. 82, 127–137 (1980). [CrossRef]
  14. C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. M. Measures, ed., Vol. 94 of Chemical Analysis Series (Wiley, New York, 1988), pp. 163–272.
  15. B. P. Scott, N. Djeu, “Efficient Raman energy extraction in HD,” Appl. Opt. 29, 2217–2218 (1990). [CrossRef] [PubMed]
  16. V. Phomsakha, B. P. Scott, N. Djeu, “Joule level tunable single-frequency Nd:glass laser,” Appl. Opt. 31, 698–699 (1992). [CrossRef] [PubMed]
  17. C. H. Townes, A. L. Schawlow, Microwave Spectroscopy, 1st ed. (McGraw-Hill, New York, 1955), Chap. 13, p. 336.
  18. M. Vaidyananthan, D. K. Killinger, “Absorption strength and pressure broadened linewidth measurements of the 1.7 μm (2–0) band of HCl at high temperatures,” J. Quantum. Spectrosc. Radiat. Transfer (to be published).
  19. M. Vaidyanathan, “Absorption spectra and pressure broadening measurements of high temperature HCl using a tunable 1.7 μm laser spectrometer,” Ph.D. dissertation (University of South Florida, Tampa, Fl., 1992).
  20. R. T. Loda, A. E. Schindler, Science and Technology Division, Institute for Defense Analyses, Alexandria, Va. 22311 (personal communication, 1990).
  21. K. Chan, H. Ito, H. Inaba, “Remote sensing system for near-infrared differential absorption of CH4 gas using low-loss optical fiber link,” Appl. Opt. 23, 3415–3420 (1984). [CrossRef] [PubMed]
  22. K. Chan, H. Ito, H. Inaba, “All-optical fiber-based remote sensing system for near infrared absorption of low-level CH4 gas,” IEEE J. Lightwave Technol. 23, 3415–3420 (1987).
  23. M. C. Alarcon, H. Ito, H. Inaba, “All-optical remote sensing of city gas through CH4 gas absorption employing a low-loss optical fiber link and an InGaAsP light-emitting diode in the near-infrared region,” Appl. Phys. B 43, 79–83 (1987). [CrossRef]
  24. H. Inaba, K. Chan, “Development and performance of a new high-resolution spectrometer using InGaAsP and InGaAs light emitting diodes in the near IR,” Infrared Phys. 29, 551–560 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited