Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Combined wavelength and frequency modulation spectroscopy: a novel diagnostic tool for materials processing

Not Accessible

Your library or personal account may give you access

Abstract

By applying both low-frequency wavelength modulation and high-frequency phase modulation to a laser diode, we develop a sensitive, high-bandwidth chemical diagnostic tool that is applicable to a variety of gas-phase processing environments. Specific chemical species are identified and monitored through their infrared absorption spectra, and the modulation methods allow for sensitive detection that is free of window and other reflection-driven interference fringes. Absorbance limits of 5.3 × 10−8 and 1.9 × 10−7 are obtained for an AlGaAs diode laser and a lead-salt diode laser, respectively. We discuss applications to plasma etching and chemical vapor deposition.

© 1993 Optical Society of America

Full Article  |  PDF Article
More Like This
Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser

David S. Bomse, Alan C. Stanton, and Joel A. Silver
Appl. Opt. 31(6) 718-731 (1992)

Wavelength modulation spectroscopy: combined frequency and intensity laser modulation

Stéphane Schilt, Luc Thévenaz, and Philippe Robert
Appl. Opt. 42(33) 6728-6738 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.