OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 32, Iss. 8 — Mar. 10, 1993
  • pp: 1275–1289

GaAs optoelectronic neuron arrays

Steven Lin, Annette Grot, Jiafu Luo, and Demetri Psaltis  »View Author Affiliations

Applied Optics, Vol. 32, Issue 8, pp. 1275-1289 (1993)

View Full Text Article

Enhanced HTML    Acrobat PDF (2200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 104 cm−2 are discussed.

© 1993 Optical Society of America

Original Manuscript: June 17, 1992
Published: March 10, 1993

Steven Lin, Annette Grot, Jiafu Luo, and Demetri Psaltis, "GaAs optoelectronic neuron arrays," Appl. Opt. 32, 1275-1289 (1993)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Psaltis, N. H. Farhat, “Optical information processing based on an associative-memory model of neural nets with thresholding and feedback,” Opt. Lett. 10, 98–100 (1985). [CrossRef] [PubMed]
  2. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988). [CrossRef]
  3. D. Z. Anderson, D. M. Linninger, “Dynamic optical interconnects: volume holograms as optical two-port operators,” Appl. Opt. 26, 5031–5038 (1987). [CrossRef] [PubMed]
  4. B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors,” Opt. Lett. 11, 118–120 (1986). [CrossRef] [PubMed]
  5. A. Yariv, Optical Electronics, 3rd ed. (Holt, Reinhart & Winston, New York, 1985), Chap. 15, p. 488.
  6. M. Orenstein, A. C. von Lehmen, C. Changhasnian, N. G. Stoffel, J. P. Harbinson, L. T. Florez, E. Clausen, J. E. Lewell, “Vertical-cavity surface-emitting InGaAs-GaAs-lasers with planar lateral definition,” Appl. Phys. Lett. 56, 2384–2386 (1990). [CrossRef]
  7. D. A. Miller, “Quantum wells for optical information processing,” Opt. Eng. 26, 368–372 (1987).
  8. L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric liquid crystal silicon integrated circuit spatial light modulator,” Opt. Lett. 15, 291–293 (1990). [CrossRef] [PubMed]
  9. K. Kasahara, T. Numai, H. Kosaka, I. Ogura, “Vertical to surface transmission electrophotonic device (VSTEP) and its application to optical interconnection and information processing,” Inst. Electron. Inform. Commun. Eng. Trans. Fundamentals Elctron. Commun. Comput. Sci. E75A, 70–80 (1992).
  10. D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artifical neural networks,” Nature (London), 343, 325–330 (1990). [CrossRef]
  11. D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (Freeman, New York, 1983), Chap. 2.
  12. J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons,” Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984). [CrossRef] [PubMed]
  13. N. H. Farhat, D. Psaltis, A. Prata, E. G. Paek, “Optical implementation of the Hopfield model,” Appl. Opt. 24, 1469–1475 (1985). [CrossRef] [PubMed]
  14. A. Papoulis, Propability, Random Variables, and Stochastic Processes, 2nd ed. (McGraw-Hill, New York, 1984), p. 194.
  15. S. H. Lin, “Optoelectronic integrated circuits for optical neural network applications,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1991).
  16. T. P. Lee, A. G. Dentai, “Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED’s for optical communication systems,” IEEE J. Quantum Electron. QE-14, 150–159 (1978).
  17. C. Juang, K. J. Kuhn, R. B. Darling, “Selective etching of GaAs and Al.3Ga.7As with citric acid/hydrogen peroxide solution,” J. Vac. Sci. Technol. B 5, 1122–1124 (1990) [CrossRef]
  18. D. Rumelhart, J. L. McClellandthe PDP Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (MIT Press, Cambridge, Mass., 1986), Vol. 1.
  19. R. A. Milano, T. H. Windhorn, E. R. Anderson, G. E. Stillman, R. D. Dupuis, P. D. Dapkus, “Al0.5Ga0.5As-GaAs heterojunction phototransistors grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 34, 562 (1979). [CrossRef]
  20. N. Chand, P. A. Houston, P. N. Robson, “Gain of a heterojunction bipolar phototransistor,” IEEE Trans. Electron Devices ED-32, 622–627 (1985). [CrossRef]
  21. S. H. Lin, F. Ho, J. H. Kim, D. Psaltis, “Monolithic integrated optoelectronic thresholding devices for neural network applications,” in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C.1991), paper CTuD1.
  22. W. Kościelniak, J.-L. Pelouard, R. Kolbas, M. A. Littlejohn, “Dark current characteristics of GaAs metal-semiconductor-metal (MSM) photodetectors,” IEEE Trans. Electron Devices 37, 1623–1629 (1990). [CrossRef]
  23. J. C. Gammel, J. M. Ballantyne, “The OPFET: a new high speed optical detector,” in Digest of International Electron Device Meeting (Optical Society of America, Washington, D.C., 1978), pp. 120–121.
  24. J. C. Gammel, J. M. Ballantyne, “High speed photoresponse mechanism of a GaAs-MESFET,” Jpn. J. Appl. Phys. 19, L273 (1980). [CrossRef]
  25. J. Katz, N. Bar-Chaim, P. C. Chen, S. Margalit, I. Uryand, D. Wilt, M. Yust, A. Yariv, “Monolithic integration of a GaAlAs buried-heterostructure laser and a bipolar phototransistor,” Appl. Phys. Lett. 37, 211 (1980). [CrossRef]
  26. S. H. Lin, J. H. Kim, J. Katz, D. Psaltis, “Integration of high-gain double heterojunction GaAs bipolar transistors with a LED for optical neural network applications,” in Proceedings of the IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, (Institute of Electrical and Electronics Engineers, New York, 1989), pp. 344–352. [CrossRef]
  27. J. H. Kim, S. H. Lin, J. Katz, D. Psaltis, “Monolithically integrated two-dimensional arrays of optoelectronic threshold devices for neural network applications,” in Laser Diode Technology and Applications, L. Figueroa, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1043, 44–52. (1989).
  28. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), Chap. 2, p. 92.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited