OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 10 — Apr. 1, 1994
  • pp: 1963–1974

Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues

Michael S. Patterson and Brian W. Pogue  »View Author Affiliations


Applied Optics, Vol. 33, Issue 10, pp. 1963-1974 (1994)
http://dx.doi.org/10.1364/AO.33.001963


View Full Text Article

Enhanced HTML    Acrobat PDF (1540 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In general it is not possible to write an analytic expression for the fluorescence signal generated by a fluorophore distributed in a scattering medium such as tissue. However, by assuming that the scattering properties of the tissue are the same at the excitation and emission wavelengths, we have derived a simple relation between the fluorescence and the scatter signals. Along with diffusion theory, this was used to write expressions for the fluorescence signal detected at the tissue surface in both the time and the frequency domains. Experiments using the fluorophore aluminum chlorosulfonated phthalocyanine in tissue-simulating materials confirmed the accuracy of the model. Applications to inυiυo spectroscopy are discussed.

© 1994 Optical Society of America

History
Original Manuscript: November 13, 1992
Published: April 1, 1994

Citation
Michael S. Patterson and Brian W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-10-1963


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Andersson-Engels, B. C. Wilson, “In vivo fluorescence in clinical oncology: fundamental and practical issues,” J. Cell. Pharmacol. 3, 66–79 (1992).
  2. A. E. Profio, J. Sarnaik, “Fluorescence of HpD for tumor detection and dosimetry in photoradiation therapy,” in Porphyrin Localization and Treatment of Tumors, D. R. Doiron, C. J. Gomer, eds. (Liss, New York, 1984), pp. 163–175.
  3. W. J. M. van der Putten, M. J. C. van Gemert, “A modelling approach to the detection of subcutaneous tumours by haematoporphyrin-derivative fluorescence,” Phys. Med. Biol. 28, 639–645 (1983). [CrossRef] [PubMed]
  4. A. F. Gmitro, F. W. Cutruzzola, M. S. Stetz, L. I. Deckelbaum, “Measurement depth of laser-induced tissue fluorescence with application to laser angioplasty,” Appl. Opt. 27, 1844–1849 (1988). [CrossRef] [PubMed]
  5. R. Richards-Kortum, R. P. Rava, M. Fitzmaurice, L. L. Tong, N. B. Ratliff, J. R. Kramer, M. S. Feld, “A one-layer model of laser-induced fluorescence for diagnosis of disease in human tissue: applications to atherosclerosis,” IEEE Trans. Biomed. Eng. 36, 1222–1232 (1989). [CrossRef] [PubMed]
  6. W. R. Potter, T. S. Mang, “Photofrin II levels by in vivo fluorescence photometry,” in Porphyrin Localization and Treatment of Tumors, D. R. Doiron, C. J. Gomer, eds. (Liss, New York, 1984), pp. 177–186.
  7. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989). [CrossRef] [PubMed]
  8. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  9. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in a turbid media,” Appl. Opt. 32, 3585–3595 (1993). [CrossRef] [PubMed]
  10. M. S. Patterson, S. J. Madsen, J. D. Moulton, B. C. Wilson, “Diffusion equation representation of photon migration in tissue,” in Microwave Theory and Techniques Symposium (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 905–908.
  11. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  12. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
  13. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991). [CrossRef] [PubMed]
  14. B. W. Henderson, T. J. Dougherty, eds., Photodynamic Therapy: Basic Principles and Clinical Applications (Dekker, New York, 1992).
  15. J. H. Brannon, D. Magde, “Picosecond laser photophysics. Group 3A phthalocyanines,” J. Am. Chem. Soc. 102, 62–65 (1980). [CrossRef]
  16. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983). [CrossRef]
  17. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  18. S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992). [CrossRef] [PubMed]
  19. I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of aqueous suspensions of Intralipid, a fat emulsion,” Phys. Med. Biol. 34, 1927–1930 (1989). [CrossRef]
  20. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  21. E. Gratton, M. Limkeman, “A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution,” Biophys. J. 44, 315–324 (1983). [CrossRef] [PubMed]
  22. B. M. Feddersen, D. W. Piston, E. Gratton, “Digital parallel acquisition in frequency-domain fluorometry,” Rev. Sci. Instrum. 60, 2929–2936 (1989). [CrossRef]
  23. H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980) pp. 331–339.
  24. M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. II: Optical properties of tissues and resulting fluence distributions,” Lasers Med. Sci. 6, 379–390 (1991). [CrossRef]
  25. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion-theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  26. M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time-resolved light-scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1203, 62–75 (1990).
  27. N. J. Turro, Modern Molecular Photochemistry (Benjamin/Cummings, Menlo Park, Calif., 1978), p. 109.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited