OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 33, Iss. 12 — Apr. 20, 1994
  • pp: 2273–2283

Theoretical modeling of a diode-pumped Nd:YAG laser with a solid nonfocusing pump light collector

Stuart D. Jackson and James A. Piper  »View Author Affiliations

Applied Optics, Vol. 33, Issue 12, pp. 2273-2283 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (1512 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report theoretical modeling for a diode-side-pumped Nd:YAG laser in which the laser rod is fixed in a solid nonfocusing (prismatic) light collector. The geometry provides for pumping the rod from four sides, which gives a relatively uniform gain profile across the transverse section of the rod and enables a high tolerance of the laser output to resonator and pump diode misalignment. The numerical model is developed to illustrate how the pumping uniformity and the transfer efficiency are affected when changes in the collector and lasing materials are made. We use small-signal gain measurements to test the predictions of the model and to examine the extent to which surface scattering from the rough rod barrel further spatially averages the deposited pump energy. The effects of the different refractive indices of the rod, collector, and fixant and the absorption properties of the laser material on optical transfer efficiencies are discussed.

© 1994 Optical Society of America

Original Manuscript: February 17, 1993
Published: April 20, 1994

Stuart D. Jackson and James A. Piper, "Theoretical modeling of a diode-pumped Nd:YAG laser with a solid nonfocusing pump light collector," Appl. Opt. 33, 2273-2283 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Burham, A. D. Hays, “High-power diode-array-pumped frequency-doubled cw Nd:YAG laser,” Opt. Lett. 14, 27–29 (1989). [CrossRef]
  2. F. Hanson, D. Haddock, “Laser diode side pumping of neodymium rods,” Appl. Opt. 27, 80–83 (1988). [CrossRef] [PubMed]
  3. T. H. Allik, W. W. Hovis, D. P. Caffey, V. King, “Efficient diode-array-pumped Nd:YAG and Nd:Lp:YAG lasers,” Opt. Lett. 14, 116–118 (1989). [CrossRef] [PubMed]
  4. D. Welford, D. M. Rines, B. J. Dinerman, “Efficient TEM∞,-mode operation of a laser-diode side-pumped Nd:YAG laser,” Opt. Lett. 16, 1850–1852 (1991). [CrossRef] [PubMed]
  5. L. R. Mashall, A. Kaz, R. L. Burnham, “Highly efficient TEM∞ operation of transversely diode-pumped Nd:YAG lasers,” Opt. Lett. 17, 186–188 (1992). [CrossRef]
  6. J. M. Dawes, S. D. Jackson, Y. Cai, P. Dekker, J. A. Piper, “Diode-pumped Nd:YAG lasers using solid nonfocusing collector geometry,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), p. 219.
  7. D. S. Bethune, “Dye cell design for high-power low-divergence eximer-pumped dye lasers,” Appl. Opt. 20, 1897–1899 (1981). [CrossRef] [PubMed]
  8. S. R. Bowman, B. J. Feldman, J. M. McMahon, A. P. Bowman, D. Scarl, “Laser techniques and frequency conversion for a neodymium-based blue communication transmitter,” in Tunable Solid-State Lasers, M. L. Shand, H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), p. 108.
  9. G. R. Hadley, A. Owyoung, P. Esherick, J. P. Hohimer, “Numerical simulation and experimental studies of longitudinally excited miniature solid-state lasers,” Appl. Opt. 27, 819–827 (1988). [CrossRef] [PubMed]
  10. T. Y. Fan, A. Sanchez, “Pump source requirements for end-pumped lasers,” IEEE J. Quantum Electron. 26, 311–316 (1990). [CrossRef]
  11. P. Laporta, M. Brussard, “Design criteria for mode size optimization in diode pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991). [CrossRef]
  12. S. R. Chin, J. W. Pierce, H. Heckscher, “Low-threshold transversely excited NdP3O14 laser,” Appl. Opt. 15, 1444–1449 (1976). [CrossRef]
  13. K. Kubodera, K. Otsuka, “Diode-pumped miniature solid-state laser: design considerations,” Appl. Opt. 16, 2747–2752 (1977). [CrossRef] [PubMed]
  14. J. Budin, M. Neubauer, M. Rondot, “On the design of neodymium miniature lasers,” IEEE J. Quantum Electron. QE-14, 831–839 (1978). [CrossRef]
  15. D. G. Hall, J. D. Spear-Zino, H. G. Koenig, R. R. Rice, J. K. Powers, G. H. Burkhart, P. D. Bear, “Edge coupling of a GaALAs DH laser diode to a planar Ti:LiNbO3 waveguide,” Appl. Opt. 19, 1847–1852 (1980). [CrossRef] [PubMed]
  16. H. H. Zenzie, M. G. Knights, J. R. Mosto, E. P. Chicklis, “Scalable diode array pumped Nd rod laser,” in Advanced Solid-State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 44.
  17. T. Y. Fan, R. L. Byer, “Modeling and cw operation of a quasi-three-level 946-nm Nd:YAG laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).
  18. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1989), Chap. 8, p. 401.
  19. N. P. Barnes, D. J. Gettemy, L. Esterowitz, R. E. Allen, “Comparison of Nd 1.06 and 1.33 μm operation in various hosts,” IEEE J. Quantum Electron. QE-23, 1434–1451 (1987). [CrossRef]
  20. J. T. Verdeyen, “Laser oscillation and amplification,” in Laser Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1989), pp. 183–218.
  21. W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988), Chap. 2, p. 49.
  22. F. E. Hovis, M. Stuff, C. J. Kennedy, B. Vivian, “Lower level relaxation of Nd:YAG,” IEEE J. Quantum Electron. 28, 39–42 (1992). [CrossRef]
  23. W. E. Martin, D. Milam, “Gain saturation in Nd-doped laser materials,” IEEE J. Quantum Electron. 18, 1155–1163 (1982). [CrossRef]
  24. M. S. Mangir, D. A. Rockwell, “Measurements of heating and energy storage in flash-pumpd Nd:YAG and Nd-doped phosphate laser glases,” IEEE J. Quantum Electron. QE-22, 574–580 (1986). [CrossRef]
  25. L. E. Holder, C. Kennedy, L. Long, G. Dubé, “One joule per Q-switched pulse diode-pumped laser,” IEEE J. Quantum Electron. 28, 986–991 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited