OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 33, Iss. 13 — May. 1, 1994
  • pp: 2695–2706

Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs

David L. Brundrett, Elias N. Glytsis, and Thomas K. Gaylord  »View Author Affiliations

Applied Optics, Vol. 33, Issue 13, pp. 2695-2706 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (1491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The validity of various homogeneous layer models for high-spatial-frequency rectangular-groove (binary) dielectric surface-relief gratings is examined for both nonconical and conical diffraction. In each model the grating is described by a slab of uniaxial material with its optic axis parallel to the grating vector. The ordinary and principal extraordinary indices of the slab depend on the grating filling factor, the substrate and cover refractive indices, and the ratio of the wavelength to the grating period. These indices can be determined by solving two transcendental equations. Higher-order indices are defined as the exact solution to these equations. Second-order indices (second-order dependence on the wavelength-to-period ratio) and first-order indices (no dependence on the wavelength-to-period ratio) are defined by approximate solutions to these equations. Layer models using higher-order and second-order indices are shown to be accurate for high-spatial-frequency gratings, even at wavelength-to-period ratios near the onset of higher-order propagating diffracted waves. These models are used to design example antireflecting gratings on silicon substrates, including designs for conical incidence. All designs are evaluated and optimized by exact rigorous coupled-wave analysis.

© 1994 Optical Society of America

Original Manuscript: March 19, 1993
Revised Manuscript: July 30, 1993
Published: May 1, 1994

David L. Brundrett, Elias N. Glytsis, and Thomas K. Gaylord, "Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs," Appl. Opt. 33, 2695-2706 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. C. Enger, S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983). [CrossRef] [PubMed]
  2. T. K. Gaylord, W. E. Baird, M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25, 4562–4567 (1986). [CrossRef] [PubMed]
  3. Y. Ono, Y. Kimura, Y. Ohta, N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt. 26, 1142–1146 (1987). [CrossRef] [PubMed]
  4. T. K. Gaylord, E. N. Glytsis, M. G. Moharam, “Zero-reflectivity homogeneous layers and high spatial-frequency surface-relief gratings on lossy materials,” Appl. Opt. 26, 3123–3134 (1987). [CrossRef] [PubMed]
  5. E. N. Glytsis, T. K. Gaylord, “Antireflection surface structure: dielectric layer(s) over a high spatial-frequency surface-relief grating on a lossy substrate,” Appl. Opt. 27, 4288–4304 (1988). [CrossRef] [PubMed]
  6. T. K. Gaylord, E. N. Glytsis, M. G. Moharam, W. E. Baird, “Technique for producing antireflection grating surfaces on dielectrics, semiconductors, and metals,” U.S. Patent5,007,708 (16-April1991).
  7. E. N. Glytsis, T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31, 4459–4469 (1992). [CrossRef] [PubMed]
  8. M. E. Motamedi, W. H. Southwell, W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31, 4371–4376 (1992). [CrossRef] [PubMed]
  9. D. H. Raguin, G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993). [CrossRef] [PubMed]
  10. D. H. Raguin, G. M. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional profiles,” Appl. Opt. 32, 2582–2598 (1993). [CrossRef] [PubMed]
  11. K. Knop, “Diffraction gratings for color filtering in the zero order,” Appl. Opt. 17, 3598–3603 (1978). [CrossRef] [PubMed]
  12. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983). [CrossRef]
  13. W. Stork, N. Streibl, H. Haidner, P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 16, 1921–1923 (1991). [CrossRef] [PubMed]
  14. L. Cescato, E. Gluch, N. Streibl, “Holographic quarter-wave plates,” Appl. Opt. 29, 3286–3290 (1990). [CrossRef] [PubMed]
  15. M. G. Moharam, T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983). [CrossRef]
  16. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980). [CrossRef]
  17. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982). [CrossRef]
  18. O. Wiener, “Die theorie des mischkorpers fur das feld der stationaren stromung,” Abh. Math. Phys. Kl. Saechs. Akad. Wiss. Leipzig 32, 509–604 (1912).
  19. W. Thornburg, “The form birefringence of lamellar systems containing three or more components,” J. Biophys. Biochem. Cytol. 3, 413–419 (1957). [CrossRef] [PubMed]
  20. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Phys. JETP 2, 466–475 (1956).
  21. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980), pp. 705–708.
  22. R. C. McPhedran, L. C. Botten, M. S. Craig, M. Neviere, D. Maystre, “Lossy lamellar gratings in the quasistatic limit,” Opt. Acta 29, 289–312 (1982). [CrossRef]
  23. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–938 (1985). [CrossRef]
  24. G. Bouchitte, R. Petit, “Homogenization techniques as applied in the electromagnetic theory of gratings,” Electromag. 5, 17–36 (1985). [CrossRef]
  25. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981). [CrossRef]
  26. D. Berreman, “Optics in stratified and anisotropic media: 4 × 4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). [CrossRef]
  27. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–756 (1979). [CrossRef]
  28. R. F. Harrington, Time Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961), pp. 55–57.
  29. A. Knoesen, M. G. Moharam, T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171–178 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited