OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 14 — May. 10, 1994
  • pp: 2775–2784

256 × 256 liquid-crystal-on-silicon spatial light modulator

Douglas J. McKnight, Kristina M. Johnson, and Roylnn A. Serati  »View Author Affiliations


Applied Optics, Vol. 33, Issue 14, pp. 2775-2784 (1994)
http://dx.doi.org/10.1364/AO.33.002775


View Full Text Article

Enhanced HTML    Acrobat PDF (1404 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A 256 × 256 pixel spatial light modulator (SLM) is designed and constructed by the use of liquid-crystal-on-silicon technology. The device is a binary electrically addressed SLM with a measured zero-order contrast ratio of 70:1 and an imaged contrast ratio of 10:1. The pixel pitch is 21.6 μm, which gives an array size of 5.53 mm. The electronic load time is 43 μs, and the 10%–90% switching time of the liquid crystal is ~ 75–80 μs at room temperature, which implies a maximum frame rate of ~ 8.3 kHz. We discuss the design trade-offs that are intrinsic to this type of device and describe how the primary application for the device in an optical correlator influenced the final design.

© 1994 Optical Society of America

History
Original Manuscript: August 27, 1993
Revised Manuscript: December 20, 1993
Published: May 10, 1994

Citation
Douglas J. McKnight, Kristina M. Johnson, and Roylnn A. Serati, "256 × 256 liquid-crystal-on-silicon spatial light modulator," Appl. Opt. 33, 2775-2784 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-14-2775


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Warde, A. D. Fisher, “Spatial light modulators: applications and functional capabilities,” in Optical Signal Processing, J. Horner, ed. (Academic, San Diego, Calif., 1987), pp. 477–523.
  2. See, for example, K. M. Johnson, D. J. McKnight, I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29, 699–714 (1993). [CrossRef]
  3. I. Underwood, D. G. Vass, R. M. Sillitto, “Evaluation of an nMOS VLSI array for an adaptive liquid-crystal spatial light modulator,” Proc. Inst. Electr. Eng. 133, 77–82 (1986).
  4. D. J. McKnight, D. G. Vass, R. M. Sillitto, “Development of a spatial light modulator: a randomly addressed liquid crystal over nMOS array,” Appl. Opt. 28, 4757–4762 (1989). [CrossRef] [PubMed]
  5. D. A. Jared, R. Turner, K. M. Johnson, “Electrically addressed spatial light modulator that uses a dynamic memory,” Opt. Lett. 16, 1785–1787 (1991). [CrossRef] [PubMed]
  6. N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989). [CrossRef] [PubMed]
  7. M. Handschy, L. K. Cotter, J. D. Cunningham, T. Drabik, S. D. Gaalema, “One-transistor DRAM FLC/VLSI SLM,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 14–17.
  8. R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1978), p. 101–104.
  9. B. D. Bock, T. A. Crow, M. K. Giles, “Design considerations for miniature optical correlation systems that use pixellated input and filter transducers,” in Optical Information-Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo. Instrum. Eng.1347, 297–309 (1990).
  10. S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 by 128 ferroelectric liquid crystal spatial light modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1959, 55–68 (1993).
  11. British Drug House mixtures are available from Merck Ltd., Westquay Road, Poole BH15 1HX, UK.
  12. M. A. Handschy, K. M. Johnson, G. Moddel, “Electro-optic applications of ferroelectric liquid crystals to optical computing,” Ferroelectrics 85, 279–289 (1988). [CrossRef]
  13. I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al Chalabi, M. J. Birch, W. A. Crossland, A. P. Sparks, S. G. Latham, “A high performance spatial light modulator,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 107–115 (1991).
  14. S. A. Serati, Boulder Nonlinear Systems Inc., 1898 Flatiron Court, Boulder, Colo. 80301 (personal communication, 1993).
  15. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987). [CrossRef] [PubMed]
  16. M. S. McKeekin, W. T. Rhodes, “Texture segmentation by threshold decomposition fitering,” in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 132.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited