OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 14 — May. 10, 1994
  • pp: 2812–2828

Temporal intensity noise characteristics and discrete numeric accuracy of analog liquid-crystal-based spatial light modulators

Michael V. Morelli, Thomas F. Krile, and John F. Walkup  »View Author Affiliations


Applied Optics, Vol. 33, Issue 14, pp. 2812-2828 (1994)
http://dx.doi.org/10.1364/AO.33.002812


View Full Text Article

Enhanced HTML    Acrobat PDF (2516 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the temporal intensity noise characteristics of analog liquid-crystal-based spatial light modulators and how they affect the device’s achievable discrete numeric accuracies in an optical computing system. First we present an analytical development that defines the concept of precision in analog computing systems, then we define a noise metric and a precision-optimal quantizer for determining the discrete numeric characteristics of the devices. Second we present an experimental discussion in which a low-noise test facility constructed for this investigation is described, and the noise characteristics of three commercially available liquid-crystal-based modulators are measured and analyzed. The accuracy implications of this measured noise are then discussed within the context of the analytical model for each modulator.

© 1994 Optical Society of America

History
Original Manuscript: August 12, 1993
Revised Manuscript: January 7, 1994
Published: May 10, 1994

Citation
Michael V. Morelli, Thomas F. Krile, and John F. Walkup, "Temporal intensity noise characteristics and discrete numeric accuracy of analog liquid-crystal-based spatial light modulators," Appl. Opt. 33, 2812-2828 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-14-2812


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Koyama, “Intensity noise and polarization study of GaAlAs–GaAs surface emitting lasers,” IEEE J. Quantum Electron. 27, 1410–1416(1991). [CrossRef]
  2. N. Z. Hakim, B. E. A. Saleh, M. C. Teich, “Signal-to-noise ratio for lightwave systems using avalanche photodiodes,” J. Lightwave Technol. 9, 318–320 (1991). [CrossRef]
  3. S. G. Batsell, “Accuracy limitations in optical linear algebraic processors,” Ph.D. dissertation (Dept. of Electrical Engineering, Texas Tech University, Lubbock, Tex., 1990).
  4. D. A. Gregory, T. D. Hudson, J. C. Kirsch, “Measurement of spatial light modulator parameters,” in Hybrid Image and Signal Processing II, D. P. Casasent, A. G. Tescher, eds. Proc. Soc. Photo-Opt. Instrum. Eng.1297, 176–185 (1990).
  5. M. G. Robinson, K. M. Johnson, “Noise analysis of polarization-based optoelectronic connectionist machine,” Appl. Opt. 31, 263–272 (1992). [CrossRef] [PubMed]
  6. T. Kajiyama, H. Kikuchi, A. Takahara, “Polymer/(liquid crystal) composite systems for novel electro-optic effects,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1665, 20–31 (1992).
  7. S. Giugni, K. Kawashima, K. Fujiwara, “New self-electro-optic effect device using two wavelengths in InGaAs/AlGaAs multiple quantum wells,” Appl Phys. Lett. 61, 376–382 (1992). [CrossRef]
  8. J. W. Goodman, L. M. Woody, “Method for performing complex-valued linear operations on complex-valued data using incoherent light,” Appl. Opt. 16, 2611–2622 (1977). [CrossRef] [PubMed]
  9. S. G. Batsell, T. L. Long, J. Walkup, T. T. Krile, “Noise limitations in optical algebra processors,” Appl. Opt. 29, 2084–2090 (1990). [CrossRef] [PubMed]
  10. S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, London, 1992), Chap. 3. [CrossRef]
  11. Personal communication with D. Timucin of the Optical Systems Laboratory, Department of Electrical Engineering, Texas Tech University, Lubbock, Texas 79406-3102, who is working on similar issues.
  12. H. W. Ottis, Noise Reduction Techniques in Electronic Systems (Wiley, New York, 1976), Chaps. 3–6.
  13. P. Norton, P. Yao, Window 3.0 Power Programming Techniques (Bantam, New York, 1990), Chap. 6.
  14. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66, 51–83 (1978). [CrossRef]
  15. W. P. Bleha, L. T. Lipton, E. Weiner-Avnear, J. Grinberg, P. G. Rief, D. Casasent, H. B. Brown, B. V. Markevitch, “Application of the liquid crystal light valve to real-time optical data processing,” Opt. Eng. 17, 371–384 (1978).
  16. T. D. Hudson, D. A. Gregory, “Optically-addressed spatial light modulators,” Opt. Laser Technol. 23, 297–302 (1991). [CrossRef]
  17. D. B. Taber, J. A. Davis, L. A. Holloway, O. Almagor, “Optically controlled Fabry–Perot interferometer using a liquid crystal light valve,” Appl. Opt. 29, 2623–2631 (1990). [CrossRef] [PubMed]
  18. J. Grinberg, A. D. Jacobson, “Transmission characteristics of a twisted nematic liquid-crystal layer,” J. Opt. Soc. Am. 66, 1003–1009 (1976). [CrossRef]
  19. K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optimal spatial phase modulator,” Opt. Eng. 29, 240–246 (1990). [CrossRef]
  20. J. C. Kirsch, “Optical Modulation Characteristics and Applications of Liquid Crystal Televisions,” U.S. Army Tech. Rep. RD-WS-92-6 (U.S. Army Missile Command, Redstone Arsenal, Ala., 1992)
  21. Meadowlark Optics Polarization Optics Catalog and Handbook (Meadowlark Optics, Longmont, Colo., 1993), pp. 10–14.
  22. Almost periodic signals result from the combination of periodic or complex periodic signals whose ratio of individual fundamental periods is not a rational number; hence no resultant fundamental period exists. Obviously this can easily arise in practice.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited