OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 33, Iss. 14 — May. 10, 1994
  • pp: 2968–2987

Elements of a hybrid interconnection theory

Haldun M. Ozaktas and Joseph W. Goodman  »View Author Affiliations

Applied Optics, Vol. 33, Issue 14, pp. 2968-2987 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (2289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a textbooklike treatment of hybrid systems employing both optical and electrical interconnections. We investigate how these two different interconnection media can be used in conjunction to realize a system not possible with any alone. More specifically, we determine the optimal mix of optical and normally conducting interconnections maximizing a given figure-of-merit function. We find that optical interconnections have relatively little to offer if the optical paths are constrained to lie on a plane (such as in an integrated optics system). However, if optical paths are permitted to leave the plane, they may enable considerable increase in performance. In any event the prize in terms of performance is accompanied by a penalty in terms of system power and/or size.

© 1994 Optical Society of America

Original Manuscript: July 2, 1992
Revised Manuscript: October 5, 1993
Published: May 10, 1994

Haldun M. Ozaktas and Joseph W. Goodman, "Elements of a hybrid interconnection theory," Appl. Opt. 33, 2968-2987 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. C. Saraswat, F. Mohammadi, “Effect of scaling of interconnections on the time delay of VLSI circuits,” IEEE Trans. Electron Devices ED-29, 645–650 (1982). [CrossRef]
  2. H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI (Addison-Wesley, Reading, Mass.1990).
  3. W. D. Hillis, “New computer architectures and their relationship to physics or why computer science is no good,” Int. J. Theor. Phys. 21, 255–262 (1982). [CrossRef]
  4. R. W. Keyes, “Communication in computation,” Int. J. Theor. Phys. 21, 263–273 (1982). [CrossRef]
  5. J. W. Goodman, F. J. Leonbergere, S.-Y. Kung, R. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866(1984). [CrossRef]
  6. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical imaging applied to microelectronic chip-to-chip interconnections,” Appl. Opt. 24, 2851–2858 (1985). [CrossRef] [PubMed]
  7. P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical interconnects for high-speed computing,” Opt. Eng 25, 1076 (1986).
  8. L. D. Hutcheson, P. Haugen, “Optical interconnects replace hardwire,” IEEE Spectrum (March1987), pp. 30–35.
  9. D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources and modulators as efficient impedance converters,” Opt. Lett. 14, 146–148 (1989). [CrossRef] [PubMed]
  10. W. H. Wu, L. A. Bergman, A. R. Johnston, C. C. Guest, S. C. Esener, P. K. L. Yu, M. R. Feldman, S. H. Lee, “Implementation of optical interconnections for VLSI,” IEEE Trans. Electron Devices ED-34, 706–714 (1987). [CrossRef]
  11. H. Kroger, C. Hilbert, U. Ghoshal, D. Gibson, L. Smith, “Applications of superconductivity to packaging,” IEEE Circuits Devices Mag. (May1989), pp. 16–21. [CrossRef]
  12. O. K. Kwon, B. W. Langley, R. F. W. Pease, M. R. Beasley, “Superconductors as very-high-speed system-level interconnects,” IEEE Electron Device Lett. 8, 582–585 (1987). [CrossRef]
  13. R. C. Frye, “Analysis of the trade-offs between conventional and superconducting interconnections,” IEEE Circuits Devices Mag. (May1989), pp. 27–32. [CrossRef]
  14. H. M. Ozaktas, J. W. Goodman, “The limitations of interconnections in providing communication between an array of points,” in Frontiers of Computing Systems Research, S. K. Tewksbury, ed. (Plenum, New York, 1991), Vol. 2, pp. 61–130. [CrossRef]
  15. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988). [CrossRef] [PubMed]
  16. M. R. Feldman, C. C. Guest, T. J. Drabik, S. C. Esener, “Comparison between electrical and free space optical interconnects for fine grain processor arrays based on interconnect density capabilities,” Appl. Opt. 28, 3820–3829 (1989). [CrossRef] [PubMed]
  17. C. W. Stirk, D. Psaltis, “Comparison of optical and electronic three-dimensional circuits,” in Microelectronic Interconnects and Packaging, G. Arijavalingam, J. Pazaris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1389, 580–593 (1990).
  18. F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison bewteen optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991). [CrossRef]
  19. A. V. Krishnamoorthy, P. J. Marchand, F. E. Kiamilev, S. C. Esener, “Grain-size considerations for optoelectronic multistage interconnection networks, Appl. Opt. 31, 5480–5507 (1992). [CrossRef] [PubMed]
  20. H. M. Ozaktas, J. W. Goodman, “Optimal partitioning of very-large-scale optoelectronic computing systems,” in Annual Meeting, Vol. 15 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 87.
  21. H. M. Ozaktas, “A physical approach to communication limits in computation,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1991).
  22. H. M. Ozaktas, “Paradigms of connectivity for computer circuits and networks,” Opt. Eng. 31, 1563–1567 (1992). [CrossRef]
  23. W. E. Donath, “Wire length distribution for placements of computer logic,” IBM J. Res. Dev. 25, 152–155 (1981). [CrossRef]
  24. M. Feuer, “Connectivity of random logic,” IEEE Trans. Comput. C-31, 29–33 (1982). [CrossRef]
  25. A. El Gamal, “Two-dimensional stochastic model for interconnections in master slice integrated circuits,” IEEE Trans. Circuits Syst. CS-28, 127–134 (1981). [CrossRef]
  26. W. R. Heller, W. F. Mikhail, W. E. Donath, “Prediction of wiring space requirements for LSI,” J. Des. Autom. Fault Tolerant Comput. 2, 117–144 (1978).
  27. H. M. Ozaktas, H. Oksuzoglu, R. F. W. Pease, J. W. Goodman, “Effect on scaling of heat removal requirements in three-dimensional systems,” Int. J. Electron. 73, 1227–1232 (1992). [CrossRef]
  28. H. M. Ozaktas, J. W. Goodman, “Lower bound for the communication volume required for an optically interconnected array of points,” J. Opt. Soc. Am. A 7, 2100–2106 (1990). [CrossRef]
  29. H. M. Ozaktas, Y. Amitai, J. W. Goodman, “A three-dimensional optical interconnection architecture with minimal growth rate of system size,” Opt. Commun. 85, 1–4 (1991). [CrossRef]
  30. M. R. Feldman, C. C. Guest, “Interconnect density capabilities of computer-generated holograms for optical interconnection of very-large-scale-integrated circuits,” Appl. Opt. 28, 3134–3137 (1989). [CrossRef] [PubMed]
  31. H. B. Bakoglu, J. D. Meindl, “Optimal interconnection circuits for VLSI,” IEEE Trans. Electron. Devices 32, 903–909(1985). [CrossRef]
  32. H. M. Ozaktas, Y. Amitai, J. W. Goodman, “Comparison of system size for some optical interconnection architectures and the folded multifacet architecture,” Opt. Commun. 82, 225–228 (1991). [CrossRef]
  33. H. M. Ozaktas, J. W. Goodman, “Implications of interconnection theory for optical digital computing,” Appl. Opt. 31, 5559–5567 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited