OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 33, Iss. 14 — May. 10, 1994
  • pp: 3034–3049

Optimum classification of correlation-plane data by Bayesian decision theory

Bret F. Draayer, Gary W. Carhart, and Michael K. Giles  »View Author Affiliations

Applied Optics, Vol. 33, Issue 14, pp. 3034-3049 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (2226 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multimodal model for correlation-plane distributions generated by composite filters is presented. From this model a statistical classifier referred to as a composite Bayesian classifier is developed. By exploiting the Gaussian behavior of correlation-plane data, this classifier concisely represents multimodal distributions as composite algebraic functions. These multimodal distributions, each of which is constructed by superposition of many normal distributions, are used to partition a vector signal space into optimum classification regions derived from Bayes’s likelihood ratio test. For the purpose of validating the multimodal model, expected performance for the training images is derived from calibration data and compared with observed performance.

© 1994 Optical Society of America

Original Manuscript: January 25, 1993
Revised Manuscript: September 25, 1993
Published: May 10, 1994

Bret F. Draayer, Gary W. Carhart, and Michael K. Giles, "Optimum classification of correlation-plane data by Bayesian decision theory," Appl. Opt. 33, 3034-3049 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Psaltis, E. G. Paek, S. S. Venkatesh, “Optical image correlation with binary spatial light modulator,” Opt. Eng 23, 698–704 (1984).
  2. M. W. Farn, J. W. Goodman, “Optimal binary phase-only matched filters,” Appl. Opt. 27, 4431–4437 (1988). [CrossRef] [PubMed]
  3. F. M. Dickey, T. K. Stalker, J. M. Mason, “Bandwidth considerations for binary phase-only filters,” Appl. Opt. 27, 3811–3818 (1988). [CrossRef] [PubMed]
  4. D. Flannery, J. Loomis, M. Milkovich, “Transform-ratio ternary phase-amplitude filter formulation for improved correlation discrimination,” Appl. Opt. 27, 4079–4083 (1988). [CrossRef] [PubMed]
  5. J. Downie, B. Hine, M. Reid, “Effects and correction of magneto-optic spatial light modulator phase errors in an optical correlator,” Appl. Opt. 31, 636–643 (1992). [CrossRef] [PubMed]
  6. F. Hester, D. Casasent, “Multivariant technique for multiclass pattern recognition,” Appl. Opt. 19, 1758–1761 (1980). [CrossRef] [PubMed]
  7. D. Jared, D. Ennis, “Learned pattern recognition using synthetic discriminant functions,” in Hybrid Image Processing, D. P. Casasent, A. G. Tescher, eds., Proc. Soc. Photo-Opt. Instrum. Eng.638, 91–101 (1986).
  8. Z. Bahri, B. V. K. Vijaya Kumar, “Generalized synthetic discriminant functions,” J. Opt. Soc. Am. A 5, 562–571 (1988). [CrossRef]
  9. A. Mahalanobis, B. V. K. Vijaya Kumar, D. Casasent, “Minimum average correlation energy filters,” Appl. Opt. 26, 3633–3640 (1987). [CrossRef] [PubMed]
  10. D. Casasent, W. Chang, “Correlation synthetic discriminant functions,” Appl. Opt. 25, 2343–2350 (1986). [CrossRef] [PubMed]
  11. T. R. Walsh, J. E. Cravatt, B. A. Kast, M. K. Giles, “Time-sequenced rotation invariant optical correlator for multiple target recognition,” in Aerospace Pattern Recognition, M. R. Weathersby, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1098, 240–252 (1989).
  12. S. I. Sudharsanan, A. Mahalanobis, M. K. Sundareshan, “Selection of optimum output correlation values in synthetic discriminant function design,” J. Opt. Soc. Am. A 7, 611–616 (1990). [CrossRef]
  13. V. B. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773–4801 (1992). [CrossRef]
  14. Z. Bahri, B. V. K. Vijaya Kumar, “Algorithms for designing phase-only synthetic discriminant functions,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 138–147 (1990).
  15. D. Jared, D. Ennis, “Inclusion of filter modulation in synthetic discriminant function construction,” Appl. Opt. 28, 232–239 (1989). [CrossRef] [PubMed]
  16. R. Shiavi, Introduction to Applied Statistical Signal Analysis (Aksen, Boston, Mass., 1991).
  17. C. W. Therrien, Decision Estimation and Classification (Wiley, New York, 1989).
  18. C. Chatfield, Introduction to Multivariate Analysis (Chapman & Hall, London, 1980).
  19. R. Schalkoff, Pattern Recognition (Wiley, New York, 1992).
  20. R. E. Ziemer, W. H. Tranter, Principles of Communications, 3rd ed. (Houghton Mifflin, Boston, Mass., 1990).
  21. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd ed. (McGraw-Hill, New York, 1984).
  22. D. J. Hand, Discrimination and Classification (Wiley, Chichester, UK, 1981).
  23. K. Fukunaga, Statistical Pattern Recognition, 2nd ed. (Academic, Boston, Mass., 1990).
  24. P. A. Lachenbruch, Discriminant Analysis (Hafner, New York, 1975).
  25. R. A. Johnson, D. W. Wichern, Applied Multivariate Statistical Analysis, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1988).
  26. P. Billings, T. Giles, “Multisensor image analysis system demonstration,” in Optical Pattern Recognition III, D. P. Casasent, T. Chao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1701, 83–91 (1992).
  27. G. W. Carhart, B. F. Draayer, M. K. Giles, “Optical pattern recognition via Bayesian decision theory,” J. Patt. Recog. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited