OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 17 — Jun. 10, 1994
  • pp: 3740–3750

Enhanced three-dimensional reconstruction from confocal scanning microscope images. II. Depth discrimination versus signal-to-noise ratio in partially confocal images

José-Angel Conchello, John J. Kim, and Eric W. Hansen  »View Author Affiliations


Applied Optics, Vol. 33, Issue 17, pp. 3740-3750 (1994)
http://dx.doi.org/10.1364/AO.33.003740


View Full Text Article

Enhanced HTML    Acrobat PDF (1737 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The enhanced depth discrimination of a confocal scanning optical microscope is produced by a pinhole aperture placed in front of the detector to reject out-of-focus light. Strictly confocal behavior is impractical because an infinitesimally small aperture would collect very little light and would result in images with a poor signal-to-noise ratio (SNR), while a finite-sized partially confocal aperture provides a better SNR but reduced depth discrimination. Reconstruction algorithms, such as the expectation-maximization algorithm for maximum likelihood, can be applied to partially confocal images in order to achieve better resolution, but because they are sensitive to noise in the data, there is a practical trade-off involved. With a small aperture, fewer iterations of the reconstruction algorithm are necessary to achieve the desired resolution, but the low a priori SNR will result in a noisy reconstruction, at least when no regularization is used. With a larger aperture the a priori SNR is larger but the resolution is lower, and more iterations of the algorithm are necessary to reach the desired resolution; at some point the a posteriori SNR is lower than the a priori value. We present a theoretical analysis of the SNR-to-resolution trade-off partially confocal imaging, and we present two studies that use the expectation-maximization algorithm as a postprocessor; these studies show that a for a given task there is an optimum aperture size, departures from which result in a lower a posteriori SNR.

© 1994 Optical Society of America

History
Original Manuscript: October 22, 1992
Revised Manuscript: November 1, 1993
Published: June 10, 1994

Citation
José-Angel Conchello, John J. Kim, and Eric W. Hansen, "Enhanced three-dimensional reconstruction from confocal scanning microscope images. II. Depth discrimination versus signal-to-noise ratio in partially confocal images," Appl. Opt. 33, 3740-3750 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-17-3740


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. S. Fay, K. Fujiwara, D. D. Rees, K. E. Fogarty, “Distribution of α-actinin in single isolated smooth muscle cells,” J. Cell Biol. 96, 783–795 (1983). [CrossRef] [PubMed]
  2. R. W. Wijnaendts van Resandt, H. K. B. Marsman, R. Kaplan, J. Davoust, E. H. K. Steltzer, R. Striker, “Optical fluorescence microscopy in three dimensions: microtomoscopy,” J. Microsc. (Oxford) 138, 29–34 (1985). [CrossRef]
  3. K. Carlsson, P. E. Danielsson, R. Lenz, A. Liljeborg, L. Majlöf, N. Åslund, “Three-dimensional microscopy using a confocal laser scanning microscope,” Opt. Lett. 10, 53–58 (1985). [CrossRef] [PubMed]
  4. G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. (Oxford) 117, 219–232 (1979). [CrossRef]
  5. D. A. Agard, J. W. Sedat, “Three-dimensional structure of a polytene nucleus,” Nature (London) 302, 676–681 (1983). [CrossRef]
  6. A. Erhardt, G. Zinser, D. Komitowski, J. Bille, “Reconstructing 3-D light-microscopy images by digital image processing,” Appl. Opt. 24, 194–200 (1985). [CrossRef] [PubMed]
  7. C. Preza, M. I. Miller, L. J. Thomas, J. G. McNally, “Regularized linear method for reconstructions of three-dimensional microscopic objects from optical sections,” J. Opt. Soc. Am. 9, 219–228 (1992). [CrossRef]
  8. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984), pp. 48–49.
  9. J.-A. Conchello, E. W. Hansen, “Enhanced 3-D reconstruction from confocal scanning microscope images. I: Deterministic and maximum likelihood reconstructions,” Appl. Opt. 29, 3795–3804 (1990). [CrossRef] [PubMed]
  10. T. Wilson, A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12, 227–229 (1987). [CrossRef] [PubMed]
  11. T. Wilson, A. R. Carlini, “Three-dimensional imaging in confocal imaging systems with finite sized detectors,” J. Microsc. (Oxford) 149, 51–66 (1988). [CrossRef]
  12. S. Kimura, C. Munakta, “Dependence of 3-D optical transfer functions on the pinhole radius in a fluorescence confocal optical microscope,” Appl. Opt. 29, 3007–3011 (1990). [CrossRef] [PubMed]
  13. J.-A. Conchello, E. W. Hansen, “Three-dimensional reconstruction of noisy confocal scanning microscope images,” in New Methods in Microscopy and Low-Light Imaging, J. E. Wampler, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1161, 279–285 (1989).
  14. J. J. Kim, E. W. Hansen, “Psychophysical study of resolution in confocal scanning microscopy,” in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992) p. 220.
  15. H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London Ser. A 231, 91–103 (1955). [CrossRef]
  16. J.-A. Conchello, “Three-dimensional reconstruction of noisy images from partially confocal scanning microscope,” Ph.D. dissertation (Dartmouth College, Hanover, N.H., 1990), pp. 147–150.
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), p. 112.
  18. J.-A. Concehllo, “Three-dimensional reconstruction of noisy images from partially confocal scanning microscope,” Ph.D. dissertation (Dartmouth College, Hanover, N.H., 1990), pp. 145–146.
  19. C. J. R. Sheppard, “The spatial frequency cut-off in three-dimensional imaging II,” Optik 74, 128–129 (1986).
  20. A. P. Dempster, N. M. Laird, D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc. B 39, 1–38 (1977).
  21. Y. Vardi, L. A. Shepp, L. Kaufman, “A statistical model for positron emission tomography,” J. Am. Stat. Assoc. 80, 8–20 (1985). [CrossRef]
  22. Z. Liang, “Statistical models of a priori information for image processing: neighboring correlation constraints,” J. Opt. Soc. Am. A 5, 2026–2031 (1988). [CrossRef]
  23. T. J. Holmes, “Maximum-likelihood image restoration adapted for noncoherent optical imaging,” J. Opt. Soc. Am. A 5, 666–673 (1988). [CrossRef]
  24. Ref. 16., pp. 55–62.
  25. D. L. Synder, M. I. Miller, L. J. Thomas, D. G. Politte, “Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography,” IEEE Trans. Med. Imaging MI-6, 228–238 (1987). [CrossRef]
  26. J.-A. Conchello, E. W. Hansen, “Resolution and signal-to-noise trade-offs in confocal microscopy,” in Annual Meeting, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper FI2.
  27. S. Kimura, C. Munakata, “Calculation of the three-dimensional optical transfer function for a confocal scanning fluorescence microscope,” J. Opt. Soc. Am. A 6, 1015–1019 (1989). [CrossRef]
  28. M. H. DeGroot, Probability and Statistics (Addison-Wesley, Reading, Mass., 1987), pp. 412–413.
  29. E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974), p. 354.
  30. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 333.
  31. D. L. Snyder, M. I. Miller, “The use of sieves to stabilize images produced with the EM algorithm for emission tomography,” IEEE Trans. Nucl. Sci. NS-32, 3864–3872 (1985). [CrossRef]
  32. I. J. Good, R. A. Gaskins, “Nonparametric roughness penalties for probability densities,” Biometrika 58, 255–277 (1971). [CrossRef]
  33. I. J. Good, R. A. Gaskins, “Density estimation and bump-hunting by the penalized likelihood method exemplified by scattering and meteorite data,” J. Am. Stat. Assoc. 75, 42–73 (1980). [CrossRef]
  34. M. I. Miller, B. Roysam, “Bayesian image reconstruction for emission tomography incorporating Good’s roughness prior on massively parallel processors,” Proc. Natl. Acad. Sci. (USA) 88, 3223–3227 (1991). [CrossRef]
  35. J.-A. Conchello, J. J. Kim, E. W. Hansen, “Digital postprocessing of partially confocal images: signal-to-noise ratio and depth discrimination,” in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 49.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited