OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 33, Iss. 18 — Jun. 20, 1994
  • pp: 3941–3950

Injection-seeded pulsed alexandrite laser for differential absorption lidar application

D. Bruneau, T. Arnaud des Lions, P. Quaglia, and J. Pelon  »View Author Affiliations

Applied Optics, Vol. 33, Issue 18, pp. 3941-3950 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (1171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a Q-switched alexandrite laser injection seeded with a cw single-mode titanium–sapphire laser. The reported experimental results show that this system meets the frequency stabilization required for differential absorption lidar measurement of humidity, pressure, and temperature. The emission of the cw titanium–sapphire master oscillator is locked to an atmospheric absorption line by means of a servoloop with derivative spectroscopy. The spectral position is stabilized within ±3.5 × 10−4 cm−1 (10 MHz) of the peak of the line over 1 hr. The alexandrite laser emits pulses of 30 mJ in 500 ns, with a spectral linewidth of ≈3.3 × 10−3 cm−1 (100 MHz). The position of the centroid of the emitted spectrum has a standard deviation of 6 × 10−4 cm−1 (18 MHz) and is held within ±1.3 × 10−3 cm−1 (40 MHz) of the peak of the absorption line over 1 h.

© 1994 Optical Society of America

Original Manuscript: February 22, 1993
Revised Manuscript: November 2, 1993
Published: June 20, 1994

D. Bruneau, T. Arnaud des Lions, P. Quaglia, and J. Pelon, "Injection-seeded pulsed alexandrite laser for differential absorption lidar application," Appl. Opt. 33, 3941-3950 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiât. Transfer 25, 151–157 (1981). [CrossRef]
  2. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989). [CrossRef] [PubMed]
  3. G. Mégie, “Mesure de la pression et de la température atmosphériques par absorption différentielle lidar: influence de la largeur d’émission laser,” Appl. Opt. 19, 34–43 (1980). [CrossRef] [PubMed]
  4. C. L. Korb, C. Y. Weng, “Differential absorption lidar technique for the measurement of the atmospheric pressure profile,” Appl. Opt. 22, 3759–3770 (1983). [CrossRef] [PubMed]
  5. C. L. Korb, C. Y. Weng, “A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982). [CrossRef]
  6. F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experimentation,” J. Atmos. Oceanic Technol. 10, 165–179 (1993). [CrossRef]
  7. J. C. Walling, “Tunable parametric-ions solid state lasers,” in Tunable Lasers, L. F. Mollenauer, J. C. White, eds. (Springer-Verlag, New York, 1987), pp. 331–398.
  8. G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. H. Kagann, “A lidar for measuring atmospheric pressure and temperature,” Rev. Sci. Instrum. 58, 2226–2237 (1987). [CrossRef]
  9. P. Ponsardin, N. S. Higdon, B. E. Grossmann, E. V. Browell, “Optimization of the Alexandrite laser tuning elements for a water vapor LIDAR,” in Laser Radar V, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1222, 178–182 (1990).
  10. D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991). [CrossRef] [PubMed]
  11. C. R. Prasad, G. K. Schwemmer, C. K. Korb, “Wavemeter measurements of frequency stability of an injection seeded alexandrite laser for pressure and temperature lidar,” in Proceedings of the 16th International Laser Radar Conference, Cambridge, Mass., M. P. McCormick, ed., NASA Conf. Publ. 3158. (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 517–520.
  12. P. Y. Thro, J. Bösenberg, V. Wulfmeyer, “An alexandrite regenerative amplifier for water vapor and temperature measurements,” in Proceedings of the 16th International Laser Radar Conference, Cambridge, Mass., M. P. McCormick, ed., NASA Conf. Publ. 3158. (National Aeronautics and Space Administration, Washington, D.C., 1992), pp. 513–516.
  13. P. A. Shulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988). [CrossRef]
  14. G. Mégie, R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt.1173–1182 (1980). [CrossRef] [PubMed]
  15. B. E. Grossman, E. V. Browell, “Spectroscopy of the water vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989). [CrossRef]
  16. D. E. Burch, D. A. Gryvnak, “Strengths, widths, and shapes of the oxygen lines near 13,100 cm−1 (7620 Å),” Appl. Opt. 8, 1493–1499 (1969). [CrossRef] [PubMed]
  17. O. Blanchard, “Conception et développement d’un mesureur de longueurs d’onde haute résolution pour des expériences lidar embarquées sur avion,” Ph.D. dissertation (Université Paris VI, Paris, France, 1990).
  18. K. Choi, S. H. Lin, E. Korevaar, C. S. Liu, “A Q-switch alexandrite laser injection seeded by a rubidium absorption frequency matched diode laser,” Opt. Commun. 88, 385–390 (1992). [CrossRef]
  19. P. Bado, M. Pessot, J. Squier, G. Mourou, D. J. Harter, “Regenerative amplification in alexandrite of pulses from specialized oscillators,” IEEE J. Quantum Electron. 24, 1167–1171 (1988). [CrossRef]
  20. F. Estable, “Amplification régénérative et multipassage d’impulsions lumineuses dans les milieux solides (YAG dopé néodyme, alexandrite, saphir dopé titane),” Ph.D. dissertation (Université Paris XI, Orsay, France, 1992).
  21. A. V. Nowak, B. J. Krohn, “Spectral characterization of a tunable alexandrite laser by rubidium absorption at 780 nm,” IEEE J. Quantum Electron. QE-21, 1607–1613 (1985). [CrossRef]
  22. J. Harrison, A. Finch, D. M. Rines, G. A. Rines, P. F. Moulton, “Low-threshold, cw, all-solid-state Ti:Al2O3 laser,” Opt. Lett. 16, 581–583 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited