OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 18 — Jun. 20, 1994
  • pp: 4042–4057

Estimating aerosol optical properties over the oceans with the multiangle imaging spectroadiometer: some preliminary studies

Menghua Wang and Howard R. Gordon  »View Author Affiliations


Applied Optics, Vol. 33, Issue 18, pp. 4042-4057 (1994)
http://dx.doi.org/10.1364/AO.33.004042


View Full Text Article

Enhanced HTML    Acrobat PDF (1891 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The multiangle imaging spectroradiometer (MISR) scheduled to be flown on the first platform of the Earth Observing System in 1998 provides an opportunity to enhance considerably the accuracy with which aerosol properties over the ocean can be retrieved through passive sensing from Earth orbit. As opposed to most radiometers in space that scan the earth in a plane normal to the subsatellite path, the MISR will scan the earth simultaneously in nine planes and thus provide the radiance exiting the atmosphere over a given pixel in nine different directions and at four wavelengths. We examine the problem of extracting the aerosol optical thickness (τa) over the oceans from MISR data, and we produce two algorithms, a single-band algorithm and a spectral or two-band algorithm, for deriving τa. The algorithms are based on the use of realistic aerosol models as candidates on which to base an estimation of the aerosol optical properties. They take into account all orders of multiple scattering. Simulations suggest that for nonabsorbing or mildly absorbing aerosol (single-scattering albedo ωa > 0.90) the error in the recovered τa is ≲10%, as long as the candidate models adequately cover the size refractive index distribution range of the expected aerosols. In the special case of a strongly absorbing aerosol (ωa = 0.75), the error in τa becomes large; however, the combination ωaτa (the scattering optical thickness) can still be recovered with an error of ≲20%, although it is always underestimated. The reason for this decrease in accuracy is that multiple-scattering effects are a strong function of ωa. A simple extension of the two-band algorithm permits the retrieval of the aerosol scattering phase function with surprising accuracy.

© 1994 Optical Society of America

History
Original Manuscript: June 15, 1993
Revised Manuscript: November 8, 1993
Published: June 20, 1994

Citation
Menghua Wang and Howard R. Gordon, "Estimating aerosol optical properties over the oceans with the multiangle imaging spectroadiometer: some preliminary studies," Appl. Opt. 33, 4042-4057 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-18-4042


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992). [CrossRef] [PubMed]
  2. M. Griggs, “Measurements of the aerosol optical thickness over water using ERTS-1 data,” J. Air Pollut. Control Assoc. 25, 622–626 (1975). [CrossRef] [PubMed]
  3. Y. Mekler, H. Quenzel, G. Ohring, I. Marcus, “Relative atmospheric aerosol content from erts observations,” J. Geophys. Res. 82, 967–970 (1977). [CrossRef]
  4. M. Griggs, “AVHRR measurements of atmospheric aerosols over oceans,” Final Rep. M0-A01-78-00-4092 (National Oceanic and Atmospheric Administration National Environmental Satellite Service, Washington, D.C., 1981).
  5. M. Griggs, “Satellite measurements of tropospheric aerosols,” Cont. Rep. 3459 (NASA, Washington, D.C., 1981).
  6. M. Griggs, “AVHRR aerosol ground truth experiment,” Final Rep. NA-83-SAC-00106 (National Oceanic and Atmospheric Administration National Environmental Satellite Service, Washington, D.C., 1984).
  7. R. S. Fraser, “Satellite measurement of mass of Sahara dust in the atmosphere,” Appl. Opt. 15, 2471–2479 (1976). [CrossRef] [PubMed]
  8. P. Koepke, H. Quenzel, “Turbidity of the atmosphere determined from satellite: calculation of optimum viewing geometry,” J. Geophys. Res. 84, 7847–7856 (1979). [CrossRef]
  9. P. Koepke, H. Quenzel, “Turbidity of the atmosphere determined from satellite: calculation of optimum wavelength,” J. Geophys. Res. 86, 9801–9805 (1981). [CrossRef]
  10. P. A. Durkee, D. R. Jensen, E. E. Hindman, T. H. V. Haar, “The relationship between marine aerosol particles and satellite-detected radiance,” J. Geophys. Res. 91D, 4063–4072 (1986). [CrossRef]
  11. C. R. N. Rao, L. L. Stowe, E. P. McCIain, J. Sapper, “Development and application of aerosol remote sensing with AVHRR data from the NOAA satellites,” in Aerosols and Climate, P. Hobbs, M. P. McCormick, eds. (Deepak, Hampton, Va., 1988) pp. 69–80.
  12. D. J. Diner, C. J. Bruegge, J. V. Martonchik, T. P. Ackerman, R. Davies, S. A. W. Gerstl, H. R. Gordon, P. J. Sellers, J. Clark, J. A. Daniels, E. D. Danielson, V. G. Duval, K. P. Klaasen, G. W. L. A. D. I. Nakamoto, R. Pagano, T. H. Reilly, “MISR: a multi-angle imaging spectroradiometer for geophysical and climatological research from EOS,” IEEE Trans. Geosci. Remote Sensing 27, 200–214 (1989). [CrossRef]
  13. D. J. Diner, C. J. Bruegge, J. V. Martonchik, G. W. Bothwell, E. D. Danielson, E. L. Floyd, V. G. Ford, L. E. Hovland, K. L. Jones, M. L. White, “A multi-angle imaging spectroradiometer for terrestrial remote sensing from the Earth Observing System,” Int. J. Imaging Syst. Technol. 3, 92–107 (1991). [CrossRef]
  14. “Earth Observing System: science and mission requirements working group report,” Tech. Memo. 86129 (NASA Goddard Space Flight Center, Greenbelt, Md., 1984).
  15. H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983), p. 114.
  16. R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, “Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate,” Nature (London) 326, 655–661 (1987). [CrossRef]
  17. P. G. Falkowski, Y. Kim, Z. Kolber, C. Wilson, C. Wirick, R. Cess, “Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic,” Science 256, 1311–1313 (1992). [CrossRef] [PubMed]
  18. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and Coastal Zone Color Scanner estimates,” Appl. Opt. 22, 20–36 (1983). [CrossRef] [PubMed]
  19. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93D, 10,909–10,924 (1988).
  20. W. M. Balch, P. M. Holligan, S. G. Ackleson, K. J. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 34, 629–643 (1991). [CrossRef]
  21. H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981). [CrossRef] [PubMed]
  22. P. Y. Deschamps, M. Herman, D. Tanre, “Modeling of the atmospheric effects and its application to the remote sensing of ocean color,” Appl. Opt. 22, 3751–3758 (1983). [CrossRef] [PubMed]
  23. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McCIain, “SeaWiFS Technical Report Series: volume 1, an overview of SeaWiFS and ocean color,” Tech. Mem. 104566 (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).
  24. M. Wang, “Atmospheric correction of the second generation ocean color sensors,” Ph.D. dissertation (University of Miami, Coral Gables, Fla., 1991), p. 135.
  25. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 32, 443–452 (1993).
  26. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Tech. Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1979).
  27. F. X. Kenizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: the lowtran 6 model,” Tech. Rep. AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass., 1983).
  28. H. R. Gordon, M. Wang, “Surface roughness considerations for atmospheric correction of ocean color sensors. 1: the Rayleigh scattering component,” Appl. Opt. 31, 4247–4260 (1992). [CrossRef] [PubMed]
  29. H. R. Gordon, M. Wahg, “Surface roughness considerations for atmospheric correction of ocean color sensors. 2: error in the retrieved water-leaving radiance,” Appl. Opt. 31, 4261–4267 (1992). [CrossRef] [PubMed]
  30. C. Junge, “Atmospheric chemistry,” Adv. Geophys. 4, 1–108 (1958). [CrossRef]
  31. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969), p. 290.
  32. G. A. d’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols—Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).
  33. P. Koepke, “Effective reflectance of oceanic whitecaps,” Appl. Opt. 23, 1816–1824 (1984). [CrossRef] [PubMed]
  34. E. C. Monahan, I. G. O’Muircheartaigh, “Whitecaps and the passive remote sensing of the ocean surface,” Int. J. Remote Sensing 7, 627–642 (1986). [CrossRef]
  35. D. Middleton, An Introduction to Statistical Communication Theory (McGraw-Hill, New York, 1960).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited