OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 19 — Jul. 1, 1994
  • pp: 4293–4299

Beam modes in graded-index media and topological phases

J. Liñares, M. C. Nistal, and D. Baldomir  »View Author Affiliations


Applied Optics, Vol. 33, Issue 19, pp. 4293-4299 (1994)
http://dx.doi.org/10.1364/AO.33.004293


View Full Text Article

Enhanced HTML    Acrobat PDF (805 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The change in the polarization plane of light vector beams retaining their shape (beam modes) under propagation through gradient-index media is evaluated as a topological phase acquired by cyclic and noncyclic evolutions of these beams on their projective Hilbert space (momentum sphere). The polarization changes are evaluated by means of the characteristic parameters of the light beam selected.

© 1994 Optical Society of America

History
Original Manuscript: August 12, 1992
Revised Manuscript: May 28, 1993
Published: July 1, 1994

Citation
J. Liñares, M. C. Nistal, and D. Baldomir, "Beam modes in graded-index media and topological phases," Appl. Opt. 33, 4293-4299 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-19-4293


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. London Ser. A 392, 45–57 (1984). [CrossRef]
  2. Y. Aharonov, J. Anandan, “Phase change during a cyclic quantum evolution,” Phys. Rev. Lett. 58, 1593–1596 (1987). [CrossRef] [PubMed]
  3. J. Samuel, R. Bhandari, “General setting for Berry’s phase,” Phys. Rev. Lett. 60, 2339–2342 (1988). [CrossRef] [PubMed]
  4. A. Tomita, R. Y. Chiao, “Observation of Berry’s topological phase by use of an optical fiber,” Phys. Rev. Lett. 57, 937–940 (1986). [CrossRef] [PubMed]
  5. G. S. Argarwal, “Quantum theory of partially polarizing devices and SU(1,1) Berry’s phase in polarization optics,” Opt. Commun. 82, 213–217 (1991). [CrossRef]
  6. T. H. Chyba, L. J. Wang, L. Mandel, R. Simon, “Measurement of the Pancharatnam phase factor for a light beam,” Opt. Lett. 13, 562–564 (1988). [CrossRef] [PubMed]
  7. J. Liñares, M.C. Nistal, “Geometric phases in multidirectional electromagnetic theory,” Phys. Lett. A 162, 7–14 (1992). [CrossRef]
  8. J. N. Ross, “The rotation of polarization in low birefringence monomode optical fibers due to geometric effects,” Opt. Quant. Electron. 16, 455–461 (1984). [CrossRef]
  9. R. Y. Chiao, Y. S. Wu, “Manifestations of Berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986). [CrossRef] [PubMed]
  10. O. J. Kwon, H. T. Lee, S. B. Lee, S. C. Choi, “Observation of a topological phase in a noncyclic case by use of a half-turn optical fiber,” Opt. Lett. 16, 223–225 (1991). [CrossRef] [PubMed]
  11. R. K. Luneburg, Mathematical Theory of Optics (U. California Press, Berkeley, Calif., 1964), pp. 41–61.
  12. L. Lewin, Theory of Waveguides (Wiley, New York, 1975), pp. 90–111.
  13. O. Costaños, E. Lopez-Moreno, K. B. Wolf, “Canonical transforms for paraxial wave optics,” in Lie Methods in Optics, J. S. Mondragn, K. B. Wolf, eds., Vol. 250 of Springer Series in Lecture Notes in Physics (Springer-Verlag, Berlin, 1986), pp. 159–182; J. R. Klauder, “Wave theoy of imaging systems,” in Lie Methods in Optics, J. S. Mondragn, K. B. Wolf, eds., Vol. 250 of Springer Series in Lecture Notes in Physics (Springer-Verlag, Berlin, 1986), pp. 183–191; V. I. Man’ko, K. B. Wolf, “The influence of spherical aberration on Gaussian Beam propagation,” in Lie Methods in Optics, J. S. Mondragn, K. B. Wolf, eds., Vol. 250 of Springer Series in Lecture Notes in Physics (Springer-Verlag, Berlin, 1986), pp. 206–225; V. I. Man’ko, “Invariants and coherent states in fiber optics,” in Lie Methods in Optics, J. S. Mondragn, K. B. Wolf, eds., Vol. 250 of Springer Series in Lecture Notes in Physics (Springer-Verlag, Berlin, 1986), pp. 193–205. [CrossRef]
  14. S. G. Krivoshlykov, I. N. Sissakian, “Optical beam and pulse propagation in inhomogeneous media. Application to multimode parabolic-index waveguides,” Opt. Quantum Electron. 12, 463–475 (1980). [CrossRef]
  15. W. K. Kahn, S. Yang, “Hamiltonian analysis of beams in an optical slab guide,” J. Opt. Soc. Am. 73, 684–689 (1983). [CrossRef]
  16. C. Gomez-Reino, J. Liñares, “Optical path integrals in graded-index media,” J. Opt. Soc. Am. A 4, 1337–1341 (1987). [CrossRef]
  17. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1982), pp. 100–111.
  18. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1984), pp. 109–119.
  19. M. V. Berry, “Interpreting the anholonomy of coiled light,” Nature (London) 326, 277–278 (1987). [CrossRef]
  20. S. M. Rytov, “Transition from wave to geometrical optics,” Dokl. Akad. Nauk. SSSR 18, 263–267 (1938); V. V. Vladimirskii, “The rotation of polarization plane for curved light ray,” Dokl. Akad. Nauk. SSSR 21, 222–226 (1941).
  21. J. Liñares, M. C. Nistal, “Geometric phases in chiral waveguiding structures,” J. Mod. Opt. 40, 889–900 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited