OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 23 — Aug. 10, 1994
  • pp: 5348–5362

Node-based reconfigurable volume interconnection. 1. Principles and optical design

B. Fracasso and J.-L. de Bougrenet de la Tocnaye  »View Author Affiliations


Applied Optics, Vol. 33, Issue 23, pp. 5348-5362 (1994)
http://dx.doi.org/10.1364/AO.33.005348


View Full Text Article

Enhanced HTML    Acrobat PDF (2354 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a general-purpose three-dimensional interconnection network that models various parallel operations between two data planes. This volume interconnection system exhibits reconfigurable capabilities because of parallel and externally weighted interconnection modules, called nodes. We propose a generic optical implementation based on the cascading of two planar hologram arrays, coupled with a bistable optically addressed spatial light modulator. The role of this component is discussed in terms of energy regeneration and spatial cross-talk limitation. As an example, a binary matrix–matrix multiplier is implemented that uses a ferroelectric liquid-crystal light valve.

© 1994 Optical Society of America

History
Original Manuscript: December 28, 1992
Revised Manuscript: January 31, 1994
Published: August 10, 1994

Citation
B. Fracasso and J.-L. de Bougrenet de la Tocnaye, "Node-based reconfigurable volume interconnection. 1. Principles and optical design," Appl. Opt. 33, 5348-5362 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-23-5348


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. M. Deen, J. F. Walkup, M. O. Hagler, “Representations of space-variant optical systems using volume holograms,” Appl. Opt. 14, 2438–2446 (1975). [CrossRef] [PubMed]
  2. B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, T. C. Strand, “Architectural implications of a digital optical processor,” Appl. Opt. 23, 3465–3474 (1984). [CrossRef] [PubMed]
  3. H. J. Caulfield, “Parallel N4 weighted optical interconnections,” Appl. Opt. 26, 4039–4040 (1987). [CrossRef] [PubMed]
  4. J. Shamir, H. J. Caulfield, R. B. Johnson, “Massive holographic interconnection networks and their limitations,” Appl. Opt. 28, 311–324 (1989). [CrossRef] [PubMed]
  5. P. Ambs, Y. Fainman, S.-H. Lee, J. Gresser, “Computerized design and generation of space-variant holographic filters. 1. System design considerations and applications of space-variant filters to image processing,” Appl. Opt. 27, 4753–4760 (1988). [CrossRef] [PubMed]
  6. P. Ambs, Y. Fainman, S.-H. Lee, J. Gresser, “Computerized design and generation of space-variant holographic filters. 2. Applications of space-variant filters to optical computing,” Appl. Opt. 27, 4761–4765 (1988). [CrossRef] [PubMed]
  7. H. J. Caulfield, H. H. Szu, “Parallel discrete and continuous wavelet transforms,” Opt. Eng. 31, 1835–1839 (1992). [CrossRef]
  8. F. Lin, “Practical realizations of N4 optical interconnects,” Appl. Opt. 29, 5226–5227 (1990). [CrossRef] [PubMed]
  9. Y. C. Lee, G. Doolen, H. H. Chen, G. Z. Sun, T. Maxwell, Y. H. Lee, C. L. Giles, “Machine learning using a higher order correlation network,” Physica D. 22, 276–280 (1986).
  10. C. L. Giles, T. Maxwell, “Learning, invariance, and generalization in high-order neural networks,” Appl. Opt. 26, 4972–4978 (1987). [CrossRef] [PubMed]
  11. J. W. Goodman, A. R. Dias, L. M. Woody, “Fully parallel high-speed incoherent method for performing discrete Fourier transforms,” Opt. Lett. 2, 1–3 (1978). [CrossRef] [PubMed]
  12. R. A. Athale, W. C. Collins, “Optical matrix–matrix multiplier based on outer product decomposition,” Appl. Opt. 21, 2089–2090 (1982). [CrossRef] [PubMed]
  13. P. S. Guilfoyle, “Systolic acousto-optic binary convolvers,” Opt. Eng. 23, 20–25 (1984).
  14. D. Casasent, “Acousto-optic transducers in iterative optical vector–matrix processors,” Appl. Opt. 21, 1859–1865 (1982). [CrossRef] [PubMed]
  15. J.-S. Yang, S.-Y. Chin, Y. S. Lee, “Programmable quadratic associative memory using holographic lenslet arrays,” Opt. Lett. 14, 838–840 (1989). [CrossRef]
  16. J.-S. Yang, S.-G. Chin, S.-W. Yuk, S.-Y. Chin, Y.-S. Lee, “Dynamic optical interconnections using holographic lenslet arrays for adaptive neural networks,” Opt. Eng. 32, 80–87 (1993). [CrossRef]
  17. B. Fracasso, C. Maissiat, P. Ambs, J.-L. de Bougrenet de la Tocnaye, “Optical implementation of inference machine using a binary multilayer interconnection network,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Phot-Opt. Instrum. Eng. 1319, 273–1274 (1990).
  18. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, L. T. Florez, “Vertical-cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991). [CrossRef]
  19. M. Orenstein, A. C. von Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, “Matrix addressable vertical-cavity surface emitting lasers array,” Electron. Lett. 27, 437–438 (1991). [CrossRef]
  20. A. W. Lohmann, S. Sinzinger, “Improved array illuminators,” Appl. Opt. 31, 5447–5452 (1992). [CrossRef] [PubMed]
  21. J. Weigelt, “Space-bandwidth product and crosstalk of spatial filtering methods for performing binary logic optically,” Opt. Eng. 27, 883–892 (1988).
  22. D. Slepian, H. O. Pollack, H. J. Landau, “Prolate spheroidal wave functions, Fourier analysis and uncertainty,” Bell Syst. Tech. J. 40, 43–84 (1961).
  23. H. Hamam, B. Fracasso, J.-L. de Bougrenet de la Tocnaye, “Node-based reconfiguration volume interconnections. 2. Hologram encoding considerations,” Appl. Opt. (1994). [CrossRef] [PubMed]
  24. J.-L. de Bougrenet de la Tocnaye, J. R. Brocklehurst, “Parallel access read/write memory using an optically addressed spatial light modulator,” Appl. Opt. 30, 179–180 (1991). [CrossRef] [PubMed]
  25. J.-L. de Bougrenet de la Tocnaye, “Ferroelectric liquid crystal light valves: application to parallel information processing,” Int. J. Opt. Comput. 2, 319–339 (1991).
  26. B. Fracasso, P. Ambs, J.-L. de Bougrenet de la Tocnaye, “Recording reconfigurable binary computer generated holograms on bistable optically addressed ferroelectric liquid-crystal spatial light modulator,” Opt. Lett. 15, 1473–1475 (1990). [CrossRef] [PubMed]
  27. M. Killinger, J.-L. de Bougrenet de la Tocnaye, P. Cambon, R. C. Chittick, W. A. Crossland, “Bistability and nonlinearity in optically addressed ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 31, 3930–3936 (1992). [CrossRef] [PubMed]
  28. K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates,” Appl. Opt. 27, 1727–1733 (1988). [CrossRef] [PubMed]
  29. K. M. Johnson, G. Moddel, “Motivations for using ferroelectric liquid crystal spatial light modulators in neurocomputing,” Appl. Opt. 28, 4888–4899 (1989). [CrossRef] [PubMed]
  30. A. W. Lohmann, D. P. Paris, “Binary Fraunhofer holograms, generated by computer,” Appl. Opt. 6, 1739–1748 (1967). [CrossRef] [PubMed]
  31. N. Davidson, A. A. Friesem, E. Hasman, “On the limits of optical interconnects,” Appl. Opt. 31, 5426–5430 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited