OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 33, Iss. 23 — Aug. 10, 1994
  • pp: 5363–5377

Reconfigurable array interconnection by photorefractive correlation

Joseph E. Ford, Yeshayahu Fainman, and Sing H. Lee  »View Author Affiliations

Applied Optics, Vol. 33, Issue 23, pp. 5363-5377 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (2767 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electronic parallel processors might communicate more effectively by photons sent through glass or air than by electrons sent through wires, but quickly routing thousands of optical signals remains a problem. Previous photorefractive interconnection networks have dedicated one hologram to each input channel. Instead, we compute a control image from the entire network configuration and store it as a single color-keyed volume hologram. This lets us use hologram superposition for fast switching between multiple prestored patterns. During operation, data signals from the input modulator array, powered by a shared wavelength-tunable laser, are correlated optically with one color-matched connection hologram to produce the output array. This decouples both data rate and interconnect switching speeds from the slow photorefractive response. We can display arbitrary connection weights using simple binary-phase spatial light modulators and gracefully accommodate modulator limitations by trading off control-image bandwidth for output signal-to-noise ratio. Experimental results with color-multiplexed reflection holograms in z-cut LiNbO3 confirmed our theoretical predictions that this approach works best for densely connected networks with high fan-in to each output. We obtained an average aggregate signal-to-noise ratio of more than 200:1 for 1024 inputs and outputs.

© 1994 Optical Society of America

Original Manuscript: July 29, 1993
Revised Manuscript: October 25, 1993
Published: August 10, 1994

Joseph E. Ford, Yeshayahu Fainman, and Sing H. Lee, "Reconfigurable array interconnection by photorefractive correlation," Appl. Opt. 33, 5363-5377 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Keyes, The Physics of VLSI Systems (Addison-Wesley, Reading, Mass., 1987), Chap. 7, pp. 146–170.
  2. J. Goodman, F. Leonberger, S. Kung, R. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984). [CrossRef]
  3. F. Kiamilev, S. Esener, R. Paturi, Y. Fainman, P. Mercier, C. Guest, S. H. Lee, “Programmable opto-electronic multiprocessors and their comparison with symbolic substitution for digital optical computing,” Opt. Eng. 28, 396–409 (1989).
  4. R. Paturi, D. T. Lu, J. E. Ford, S. C. Esener, S. H. Lee, “Parallel algorithms based on expander graphs for optical computing,” Appl. Opt. 30, 917–927 (1991). [CrossRef] [PubMed]
  5. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988). [CrossRef]
  6. P. Yeh, A. T. Chiou, J. Hong, “Optical interconnection using photorefractive dynamic holograms,” Appl. Opt. 27, 2093–2096 (1988). [CrossRef] [PubMed]
  7. S. Weiss, M. Segev, S. Sternklar, B. Fischer, “Photorefractive dynamic optical interconnects,” Appl. Opt. 27, 3422–3428 (1988). [CrossRef] [PubMed]
  8. A. Marrakchi, W. M. Hubbard, S. F. Habiby, J. S. Patel, “Dynamic holographic interconnects with analog weights in photorefractive crystals,” Opt. Eng. 29, 215–224 (1990). [CrossRef]
  9. E. S. Maniloff, K. M. Johnson, “Dynamic holographic interconnects using static holograms,” Opt. Eng. 29, 225–229 (1990). [CrossRef]
  10. S. Wu, Q. Song, A. Mayers, D. A. Gregory, F. T. S. Yu, “Reconfigurable interconnections using photorefractive holograms,” Appl. Opt. 29, 1118–1125 (1990). [CrossRef] [PubMed]
  11. Y. Owechko, B. H. Soffer, “Optical interconnection method for neutral networks using self-pumped phase-conjugate mirrors,” Opt. Lett. 16, 675–677 (1991). [CrossRef] [PubMed]
  12. C. Gu, P. Yeh, “Scattering due to randomly distributed charge particles in photorefractive crystals,” Opt. Lett. 16, 1572–1574 (1991). [CrossRef] [PubMed]
  13. H. Lee, “Volume holographic global and local interconnecting patterns with maximal capacity and minimal first-order cross talk,” Appl. Opt. 28, 5312–5316 (1989). [CrossRef] [PubMed]
  14. C. Slinger, “Analysis of the N-to-N volume-holographic neural interconnect,” J. Opt. Soc. Am. A 8, 1074–1081 (1991). [CrossRef]
  15. J. A. Neff, R. A. Athale, S. H. Lee, “Two-dimensional spatial light modulators: a tutorial,” Proc. IEEE 78, 826–855 (1991). [CrossRef]
  16. E. G. Paek, D. Psaltis, “Optical associative memory using Fourier transform holograms,” Opt. Eng. 26, 428–433 (1987).
  17. A. J. David, B. E. A. Saleh, “Optical implementation of the Hopfield algorithm using correlators,” Appl. Opt. 29, 1063–1066 (1990). [CrossRef] [PubMed]
  18. J. E. Ford, Y. Fainman, S. H. Lee, “Array interconnection by phase-coded optical correlation,” Opt. Lett. 15, 1088–1090 (1990). [CrossRef] [PubMed]
  19. J. E. Ford, “Reconfigurable array interconnection by photorefractive volume holography,” Ph.D. dissertation (University of California, San Diego, La Jolla, Calif., 1992).
  20. N. Farhat, D. Psaltis, “Optical implementation of associative memory based on models of neural networks,” in Optical Signal Processing, J. Horner, ed. (Academic, New York, 1987), Sec. 23, pp. 129–162.
  21. D. M. Pepper, J. AuYeung, D. Fekete, A. Yariv, “Spatial convolution and correlation of optical fields via degenerate four-wave mixing,” Opt. Lett. 3, 7–9 (1978). [CrossRef] [PubMed]
  22. J. O. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive media,” Appl. Phys. Lett. 37, 5–7 (1980). [CrossRef]
  23. G. Gheen, L. J. Cheng, “Optical correlators with fast updating speed using photorefractive semiconductor materials,” Appl. Opt. 27, 2756–2761 (1988). [CrossRef] [PubMed]
  24. L. H. Domash, C. Gozewski, “Composite pattern recognition using the nonlinear triple processor,” in Optical Pattern Recognition II, H. J. Caulfield, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1134, 162–172 (1989).
  25. M. G. Nicholson, I. R. Cooper, M. W. McCall, C. R. Petts, “Simple computational model of image correlation by four-wave mixing in photorefractive media,” Appl. Opt. 26, 278–286 (1987). [CrossRef] [PubMed]
  26. F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, D. A. Gregory, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991). [CrossRef]
  27. F. T. S. Yu, S. Wu, A. W. Mayers, S. Rajan, “Wavelength multiplexed reflection matched spatial filters using LiNbO3,” Opt. Commun. 81, 343–347 (1991). [CrossRef]
  28. The first public presentation of the LiNbO3 correlator work performed at the University of California, San Diego, was by J. Ford, Y. Fainman, S. Lee, “Reconfigurable array interconnection by photorefractive correlation,” in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 274.
  29. J. E. Ford, Y. Fainman, S. H. Lee, “Enhanced photorefractive performance from 45°-cut BaTiO3,” Appl. Opt. 28, 4808–4815 (1989). [CrossRef] [PubMed]
  30. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  31. G. Rakuljic, V. Leyva, “Volume holographic narrow band optical filter,” Opt. Lett. 15, 459–461 (1993). [CrossRef]
  32. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993). [CrossRef] [PubMed]
  33. D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975). [CrossRef]
  34. D. Von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974). [CrossRef]
  35. D. Armitage, D. Kinell, “Liquid-crystal integrated silicon spatial light modulator,” Appl. Opt. 31, 3945–3949 (1992). [CrossRef] [PubMed]
  36. J. E. Ford, S. H. Lee, Y. Fainman, “Reconfigurable interconnection using the correlation matrix–tensor multiplier,” presented at the International Commission for Optics Topical Meeting on Optical Computing, Kobe, Japan, April 1990.
  37. H. Takahashi, D. Zaleta, J. Ma, J. Ford, Y. Fainman, S. Lee, “Packaged optical interconnection system based on photorefractive correlation,” Appl. Opt. 33, 2991–2997 (1994). [CrossRef] [PubMed]
  38. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Sec. 2.9, pp. 44–55.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited