OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 24 — Aug. 20, 1994
  • pp: 5628–5641

Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows

M. H. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse  »View Author Affiliations


Applied Optics, Vol. 33, Issue 24, pp. 5628-5641 (1994)
http://dx.doi.org/10.1364/AO.33.005628


View Full Text Article

Enhanced HTML    Acrobat PDF (1710 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of disturbances of the flow pattern in front of the fiber facet of a fiber-coupled self-mixing diode-laser Doppler velocimeter system are investigated. This was done by comparing measurements and calculations of the Doppler frequency spectrum with the expected values. The calculated Doppler spectrum was obtained from the calculation of light scattered (with or without Doppler shift) by the moving particles in front of the fiber facet. The velocity profile of the particles was calculated with a finite-element method. Measurements were done with water (with polystyrene spheres) and whole blood as the samples. Good agreement between measurements and calculations were obtained. The velocimeter was modeled as a five-mirror setup. The reflectivity of the fiber facet closest to the laser turns out to have the most influence on the sensitivity and stability of the laser. Direct reflection of unwanted light back into the laser cavity was avoided by placing a glass plate in front of the fiber. Design considerations are presented.

© 1994 Optical Society of America

History
Original Manuscript: November 15, 1993
Revised Manuscript: January 21, 1994
Published: August 20, 1994

Citation
M. H. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows," Appl. Opt. 33, 5628-5641 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-24-5628


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, F. H. B. Tuynman, “Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements,” Med. Biol. Eng. Comp. 30, 441–446 (1992). [CrossRef]
  2. M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R: Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber coupled semiconductor laser: theory,” Appl. Opt. 31, 3401–3408 (1992). [CrossRef] [PubMed]
  3. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, The Netherlands, 1988), Chap. 9. [CrossRef]
  4. A. Acket, D. Lenstra, A. J. den Boef, B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984). [CrossRef]
  5. R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980). [CrossRef]
  6. D. M. Clunie, H. H. Rock, “The laser feedback interferometer,” J. Sci. Instrum. 41, 489–492 (1964). [CrossRef]
  7. W. J. Burke, M. Ettenberg, H. Kressel, “Optical feedback effects in cw injection lasers,” Appl. Opt. 17, 2233–2236 (1978). [CrossRef] [PubMed]
  8. G. Beheim, K. Fritsch, “Range finding using frequency-modulated laser diodes,” Appl. Opt. 25, 1439–1442 (1986). [CrossRef] [PubMed]
  9. P. de Groot, G. Gallatin, S. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988). [CrossRef] [PubMed]
  10. S. Kyuma, M. Numoshita, T. Hakayama, “Fiber-optic laser Doppler velocimeter using an external cavity semiconductor laser,” Appl. Phys. Lett. 45, 1005–1008 (1984). [CrossRef]
  11. P. de Groot, “Use of a multimode short external cavity laser diode for absolute distance interferometry,” Appl. Opt. 32, 4193–4198 (1993). [CrossRef] [PubMed]
  12. S. L. Jacques, M. Keijzer, “Dosimetry for lasers and light in dermatology: Monte Carlo simulations of 577-nm pulsed laser penetration into cutaneous vessels,” in Lasers in Dermatology and Tissue Welding, O. T. Tan, J. V. White, R. A. White, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1422, 3–13 (1991).
  13. V. S. Lee, L. Tarassenko, “Absorption and multiple scattering by suspension of aligned red blood cells,” J. Opt. Soc. Am. A 8, 1135–1141 (1991). [CrossRef] [PubMed]
  14. J. M. Steinke, A. P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. A 5, 813–822 (1988). [CrossRef] [PubMed]
  15. H. W. Jentink, F. F. M. de Mul, R. G. A. M. Hermsen, R. Graaff, J. Greve, “Monte Carlo simulations of laser Doppler blood flow measurements in tissue,” Appl. Opt. 29, 2371–2381 (1990). [CrossRef] [PubMed]
  16. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelength: Monte Carlo simulations and measurements,” Appl. Opt. 33, 3549–3558. [PubMed]
  17. A. Segal, Sepran User Manual, Programmers Guide and Standard Problems (Ingenieursburo Sepra, Leidschendam, The Netherlands, 1990).
  18. C. Cuvalier, A. Segal, A. A. van Steenhoven, Finite Element Method and Navier–Stokes Equation (Reidel, Dordrecht, The Netherlands, 1986). [CrossRef]
  19. S. E. Charm, G. S. Kurland, Blood Flow and Microcirculation (Wiley, New York, 1974), p. 37.
  20. D. A. McDonald, Blood Flow in Arteries (Arnold, London, 1974), p. 89.
  21. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), Chap. 7.
  22. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992). [CrossRef] [PubMed]
  23. J. A. Crucio, C. C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am. 41, 302–304 (1951). [CrossRef]
  24. R. F. Bonner, R. Nossal, S. Havlin, G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987). [CrossRef] [PubMed]
  25. J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027–4033 (1988). [CrossRef] [PubMed]
  26. F. F. M. de Mul, H. W. Jentink, M. H. Koelink, J. Greve, J. G. Aarnoudse, “Velocimetry with diode lasers,” in Proceedings of the Third International Conference of Laser Anemometry: Advances and Applications (U. Manchester Press, Manchester, England, 1989), IL3.1–IL3.17.
  27. K. Mito, N. Yonezu, H. Ikeda, M. Sumi, S. Shinohara, “Blood flow measurement by self-mixing semiconductor laser Doppler velocimeter,” presented at the 30th Annual Conference of the Society of Instruments of Control Engineers, Yonezawa, Japan, 17–19 July 1991.
  28. K. Mito, Y. Ogasawara, O. Hiramatsu, K. Tsujiokam, F. Kajiya, “A laser Doppler catheter for monitoring both phasic and mean coronary vein flow,” Heart Vessels 6, 1–8 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited