OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 33, Iss. 27 — Sep. 20, 1994
  • pp: 6415–6421

Analysis of nonreciprocal mode propagation in magneto-optic rib-waveguide structures with the spectral-index method

M. Shamonin and P. Hertel  »View Author Affiliations

Applied Optics, Vol. 33, Issue 27, pp. 6415-6421 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (826 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Passive linear nonreciprocal devices, such as isolators or circulators, require gyrotropic media. If there is a contribution to the dielectric permittivity tensor of odd order in the magnetization, the modes propagate differently in the forward and the backward directions. We investigate dielectric waveguides that are formed by a rib of rectangular cross section on top of a planar structure. The rib or planar structure may consist of layers, each of which may be gyrotropic. We extend the spectral-index method for calculating differences between forward- and backward-propagation constants. A new design for an efficient nonreciprocal phase shifter is proposed.

© 1994 Optical Society of America

Original Manuscript: October 12, 1993
Revised Manuscript: March 25, 1994
Published: September 20, 1994

M. Shamonin and P. Hertel, "Analysis of nonreciprocal mode propagation in magneto-optic rib-waveguide structures with the spectral-index method," Appl. Opt. 33, 6415-6421 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. L. Koch, U. Koren, “Photonic integrated circuits,” AT&T Tech. J. 71, 63–74 (1992).
  2. P. Paroli, “Magnetooptic devices based on garnet films,” Thin Solid Films 114, 187–219 (1984). [CrossRef]
  3. H. J. Schmitt, “Magneto-optic devices,” in Electro-Optic and Magneto-Optic Materials II, H. Dammann, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1274, 208–219 (1990).
  4. H. Dötsch, P. Hertel, B. Lührmann, S. Sure, H. P. Winkler, M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28, 2979–2984 (1992). [CrossRef]
  5. S. Jackel, S. Atzmon, R. Lallouz, S. Sternklar, P. Shalev, “Nonlinear optical isolators based on high-reflectivity Brillouin mirrors and their applications to advanced lasers,” Opt. Eng. 31, 328–334 (1992). [CrossRef]
  6. L. Solymar, T. Wilson, “Controllable nonreciprocal phase shifter,” Electron. Lett. 21, 234–235 (1985). [CrossRef]
  7. T. Mizumoto, K. Oochi, T. Harada, Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4, 347–352 (1986). [CrossRef]
  8. J. P. Castera, G. Hepner, “Isolator in integrated optics using the Faraday and Cotton–Mouton effects,” IEEE Trans. Magn. MAG-13, 1583–1585 (1977). [CrossRef]
  9. H. Dammann, E. Pross, G. Rabe, W. Tolksdorf, “45° waveguide isolator with phase mismatch,” Appl. Phys. Lett. 56, 1302–1304(1990). [CrossRef]
  10. H. Dammann, E. Pross, G. Rabe, W. Tolksdorf, M. Zinke, “Phase matching in symmetrical single-mode magneto-optic waveguides by application of stress,” Appl. Phys. Lett. 49, 1755–1757 (1986). [CrossRef]
  11. R. Wolfe, J. F. Dillon, R. A. Lieberman, V. J. Fratello, “Broadband magneto-optic waveguide isolator,” Appl. Phys. Lett. 57, 960–962 (1990). [CrossRef]
  12. S. T. Kirsch, W. A. Biolsi, S. L. Blank, P. K. Tien, R. J. Martin, M. Bridenbaugh, P. Grabbe, “Semileaky thin-film optical isolator,” J. Appl. Phys. 52, 3190–3199 (1981). [CrossRef]
  13. F. Auracher, H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun. 13, 435–438 (1975). [CrossRef]
  14. Y. Okamura, T. Negami, S. Yamamoto, “Integrated optical isolator and circulator using nonreciprocal phase shifters: a proposal,” Appl. Opt. 23, 1886–1889 (1984). [CrossRef] [PubMed]
  15. C. L. Chen, A. Kumarswami, “Nonreciprocal TM-mode thin-film phase shifters,” Appl. Opt. 25, 3664–3670 (1986). [CrossRef] [PubMed]
  16. D. Marcuse, “Influence of position of magnetooptic layer on differential phase shift of slab waveguide,” IEEE J. Quantum Electron. QE-23, 1268–1272 (1987). [CrossRef]
  17. P. N. Robson, P. C. Kendall, Rib Waveguide Theory by the Spectral Index Method (Wiley, New York, 1990), pp. 1–193.
  18. M. S. Stern, P. C. Kendall, P. W. A. McIlroy, “Analysis of the spectral index method for vector modes of rib waveguides,” Proc. Inst. Electr. Eng. Part J 137, 21–26 (1990).
  19. C. Vassalo, Y. H. Wang, “A new semirigorous analysis of rib waveguides,” J. Lightwave Technol. 8, 56–65 (1990). [CrossRef]
  20. A. Erdmann, M. Shamonin, P. Hertel, H. Dötsh, “Finite difference analysis of gyrotropic waveguides,” Opt. Commun. 102, 25–30 (1993). [CrossRef]
  21. Y. Okamura, T. Negami, S. Yamamoto, “A design for a nonreciprocal phase shifter,” Opt. Quantum Electron. 17, 195–199 (1985). [CrossRef]
  22. C. Vasallo, Optical Waveguide Concepts (Elsevier, Amsterdam, 1991), Chap. 1, pp. 7–8.
  23. J. B. Davies, F. A. Fernandez, Y. Fang, “Finite-difference solution of inhomogeneous waveguide modes using a fast direct solver routine,” IEEE Trans. Magn. 27, 4028–4031 (1991). [CrossRef]
  24. M. Koshiba, K. Hayata, M. Suzuki, “On accuracy of approximate scalar finite-element analysis of dielectric optical waveguides,” Trans. Inst. Electron. Commun. Eng. Jpn. E66, 157–158 (1983).
  25. S. Yamamoto, T. Makimoto, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45, 882–888 (1974). [CrossRef]
  26. R. Gerhardt, S. Sure, H. Dötsch, T. Linkewitz, W. Tolksdorf, “Optical properties of bismuth and gallium substituted thulium iron garnet films,” Opt. Commun. 102, 31–35 (1993). [CrossRef]
  27. M. Shamonin, A. Erdmann, P. Hertel, H. Dötsch, “A note on the analysis of nonrecirpocal phase shifters by the spectral index method,” Microwave Opt. Technol. Lett. 6, 790–792 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited