OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 33, Iss. 27 — Sep. 20, 1994
  • pp: 6472–6481

Coherent Doppler lidar signal covariance including wind shear and wind turbulence

Rod Frehlich  »View Author Affiliations

Applied Optics, Vol. 33, Issue 27, pp. 6472-6481 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (1106 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance of a coherent Doppler lidar is determined by the statistics of the coherent Doppler signal. The derivation and calculation of the covariance of the Doppler lidar signal for random atmospheric wind fields and wind shear are presented. The signal parameters are defined for a general coherent Doppler lidar system in terms of the atmospheric parameters. There are two distinct physical regimes: one in which the transmitted pulse determines the signal statistics and the other in which the wind field and the atmospheric parameters dominate the signal statistics. When the wind fields dominate the signal statistics, Doppler lidar data are nonstationary and the signal correlation time is proportional to the operating wavelength of the lidar. The signal covariance is derived for signal-shot and multiple-shot conditions. For a single shot, the parameters of the signal covariance depend on the random, instantaneous atmospheric parameters. For multiple shots, various levels of ensemble averaging over the temporal scales of the atmospheric processes are required. The wind turbulence is described by a Kolmogorov spectrum with an outer scale of turbulence. The effects of the wind turbulence are demonstrated with calculations for a horizontal propagation path in the atmospheric surface layer.

© 1994 Optical Society of America

Original Manuscript: July 19, 1993
Revised Manuscript: March 15, 1994
Published: September 20, 1994

Rod Frehlich, "Coherent Doppler lidar signal covariance including wind shear and wind turbulence," Appl. Opt. 33, 6472-6481 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986). [CrossRef]
  2. J. C. Petheram, G. Frohbeiter, A. Rosenberg, “Carbon dioxide Doppler lidar wind sensor on a space station polar platform,” Appl. Opt. 28, 834–839 (1989). [CrossRef] [PubMed]
  3. M. J. Post, R. E. Cupp, “Optimizing a pulse Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990). [CrossRef] [PubMed]
  4. G. N. Pearson, B. J. Rye, “Frequency fidelity of a compact CO2 Doppler lider transmitter,” Appl. Opt. 31, 6475–6484 (1992). [CrossRef] [PubMed]
  5. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989). [CrossRef] [PubMed]
  6. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991). [CrossRef] [PubMed]
  7. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993). [CrossRef]
  8. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterdoyne lidar. I. Spectral accumulation and the Cramer–Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993). [CrossRef]
  9. R. G. Frehlich, M. J. Yadlowsky, “Performance of mean frequency estimators for Doppler radar and lidar,” J. Atmos. Ocean. Technol. (to be published).
  10. R. M. Hardesty, “Performance of a discrete spectral peak frequency estimator for Doppler wind velocity measurements,” IEEE Trans. Geosci. Remote Sensing GFE-24, 777–783 (1986). [CrossRef]
  11. P. R. Mahapatra, D. S. Zrnic, “Practical algorithms for mean velocity estimation in pulse Doppler weather radars using a small number of samples,” IEEE Trans. Geosci. Electron. GE-21, 491–501 (1983).
  12. P. T. May, R. G. Strauch, “An examination of Wind Profiler signal processing algorithms,” J. Atmos. Oceanic Technol. 6, 731–735 (1989). [CrossRef]
  13. P. T. May, T. Sato, M. Yamamoto, S. Kato, T. Tsuda, S. Fukao, “Errors in the determination of wind speed by Doppler radar,” J. Atmos. Oceanic Technol. 6, 235–242 (1989). [CrossRef]
  14. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans Geosci. Remote Sensing 31, 28–35 (1993). [CrossRef]
  15. D. S. Zrnic, “Estimation of spectral moments of weather echoes,” IEEE Trans. Geosci. Electron. GE-17, 113–128 (1979). [CrossRef]
  16. R. J. Doviak, D. S. Zrnic, Doppler Radar and Weather Observations (Academic, San Diego, Calif., 1984).
  17. H. L. van Trees, Detection, Estimate, and Modulation Theory, Part I (Wiley, New York, 1968).
  18. C. W. Helstrom, Statistical Theory of Signal Detection (Pergamon, New York, 1968).
  19. B. Gold, A. V. Oppenheim, C. M. Rader, “Theory and implementation of the discrete Hilbert transformation,” in Symposium on Computer Processing in Communications, (Polytechnic, Brooklyn, N. Y., 1970), Vol. 19, pp. 235–250.
  20. V. Cizek, “Discrete Hilbert transform,” IEEE Trans. Audio Electroacoust. AU-18, 340–343 (1970). [CrossRef]
  21. R. G. Frehlich, “Cramer–Rao bound for Gaussian random processes and applications to radar processing of atmospheric signals,” IEEE Trans. Geosci. Remote Sensing 31, 1123–1131 (1993). [CrossRef]
  22. G. M. Ancellet, R. T. Menzies, “Atmospheric correlation-time measurements and effects on coherent Doppler lidar,” J. Opt. Soc. Am. A 4, 367–373 (1987). [CrossRef]
  23. G. M. Ancellet, R. T. Menzies, W. B. Grant, “Atmospheric velocity spectral width measurements using the statistical distribution of pulsed CO2 lidar return signal intensities,” J. Atmos. Oceanic Technol. 6, 50–58 (1989). [CrossRef]
  24. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  25. J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983). [CrossRef] [PubMed]
  26. B. J. Rye, “Spectral correlation of atmospheric lidar returns with range-dependent backscatter,” J. Opt. Soc. Am. A 7, 2199–2207 (1990). [CrossRef]
  27. A. S. Monin, A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (MIT, Cambridge, Mass., 1975), Vol. 2, pp. 102, 461.
  28. J. C. Kaimal, J. C. Wyngaard, Y. Izumi, O. R. Cote, “Spectral characteristics of surface-layer turbulence,” Q. J. R. Meteorol. Soc. 98, 563–589 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited