OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 33, Iss. 30 — Oct. 20, 1994
  • pp: 6902–6918

Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes

A. Lacaita, P. A. Francese, F. Zappa, and S. Cova  »View Author Affiliations

Applied Optics, Vol. 33, Issue 30, pp. 6902-6918 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (2307 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Germanium avalanche photodiodes (APD’s) working biased above the breakdown voltage detect single optical photons in the near-infrared wavelength range. We give guidelines for the selection of devices suitable for photon-counting applications among the commercial samples, and we discuss in detail how the devices should be operated to achieve the best performance, both in terms of noise-equivalent power (NEP) and the timing-equivalent bandwidth. We introduce the driving electronics and we show that, in the measurements of fast optical signals, the adoption of single-photon techniques is very favorable, notwithstanding that presently available photodiodes are not designed for this purpose. On the contrary, in the detection of cw signals, the lower NEP values achieved in photon counting may not be sufficient to justify the replacement of conventional analog p-i-n germanium detectors, which offer comparable performance with a definitely larger sensitive area. Finally, we show that, by properly choosing the operating conditions, some selected APD’s achieve an 85-ps time resolution in the detection of optical photons at a 1.3-μm wavelength, which corresponds to a timing-equivalent bandwidth of 1.8 GHz. To the best of our knowledge, this time resolution is the lowest reported to date for single-photon detectors in the near infrared.

© 1994 Optical Society of America

Original Manuscript: July 28, 1993
Revised Manuscript: March 14, 1994
Published: October 20, 1994

A. Lacaita, P. A. Francese, F. Zappa, and S. Cova, "Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes," Appl. Opt. 33, 6902-6918 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Hyperpure germanium detection system EO-817L, 1991 data sheet (North Coast Scientific Corporation, P.O. Box 6812, Santa Rosa, Calif., 95406).
  2. D. P. Mathu, R. J. McIntyre, P. P. Webb, “A new germanium photodiode with extended long-wavelength response,” Appl. Opt. 9, 1842–1847 (1970). [CrossRef]
  3. D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1983), Chap. 2, p. 36.
  4. R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986). [CrossRef] [PubMed]
  5. G. Ripamonti, M. Ghioni, A. Lacaita, “No dead-space optical time-domain reflectometer,” J. Lightwave Technol. 8, 1278–1283 (1990). [CrossRef]
  6. N. S. Nightingale, “A new silicon avalanche photodiode detector for astronomy,” Exp. Astron. 1, 407–422 (1991). [CrossRef]
  7. J. R. Palmer, G. R. Morrison, “The use of avalanche photodiodes for the detection of soft x rays,” Rev. Sci. Instrum. 63, 828–831 (1992). [CrossRef]
  8. T. S. Larchuk, R. A. Campos, J. G. Rarity, P. R. Tapster, E. Jakeman, B. E. A. Saleh, M. C. Teich, “Interfering entangled photons of different colors,” Phys. Rev. Lett. 70, 1603–1606 (1993). [CrossRef] [PubMed]
  9. W. Haecker, O. Groezinger, M. H. Pilkuhn, “Infrared photon counting by Ge avalanche diodes,” Appl. Phys. Lett. 19, 113–115 (1971). [CrossRef]
  10. B. F. Levine, C. G. Bethea, “Single photon detection at 1.3 μm using a gated avalanche photodiode,” Appl. Phys. Lett. 44, 553–555 (1984). [CrossRef]
  11. B. F. Levine, C. G. Bethea, L. G. Cohen, J. C. Campbell, G. D. Morris, “Optical time domain reflectometer using a photon counting InGaAs/InP avalanche photodiode at 1.3 μm,” Electron. Lett. 21, 83–84 (1985). [CrossRef]
  12. A. Lacaita, S. Cova, F. Zappa, P. A. Francese, “Subnanosecond single-photon timing with commercially available germanium photodiodes,” Opt. Lett. 18, 75–77 (1993). [CrossRef] [PubMed]
  13. S. Cova, A. Lacaita, M. Ghioni, G. Ripamonti, T. A. Louis, “20-ps timing resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 60, 1104–1110 (1989). [CrossRef]
  14. R. H. Haitz, “Mechanisms contributing to the noise pulse rate of avalanche diodes,” J. Appl. Phys. 36, 3123–3131 (1965). [CrossRef]
  15. S. Cova, A. Lacaita, G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Dev. Lett. 12, 685–687 (1991). [CrossRef]
  16. T. Mikawa, T. Kaneda, H. Nishimoto, M. Motegi, H. Okushima, “Small-active area germanium avalanche photodiode for single-mode fiber at 1.3-μm wavelength,” Electron. Lett. 19, 452–453 (1983). [CrossRef]
  17. R. H. Haitz, “Variation of junction breakdown voltage by charge trapping,” Phys. Rev. 138, A260–A267 (1965). [CrossRef]
  18. C. G. Bethea, B. F. Levine, S. Cova, G. Ripamonti, “High-resolution and high-sensitivity optical time-domain reflectometer,” Opt. Lett. 13, 233–235 (1988). [CrossRef] [PubMed]
  19. O. Groezinger, W. Haecker, “Influence of tunneling processes on avalanche breakdown in Ge and Si,” J. Appl. Phys. 44, 1307–1310 (1973). [CrossRef]
  20. A. D. MacGregor, B. Dion, R. J. McIntyre, “High-sensitivity, high-data-rate receivers for ISL using low-noise silicon APD’s,” in Optical Space Communication, G. Otrio, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1131, 176–186 (1989).
  21. R. H. Haitz, “Model for the electrical behavior of a microplasma,” J. Appl. Phys. 35, 1370–1376 (1964). [CrossRef]
  22. P. Antognetti, S. Cova, A. Longoni, “A study of the operation and performance of an avalanche diode as a single photon detector,” in Proceedings of the Second Ispra Nuclear Electronics Symposium, publ. EUR 537e (Office for Official Publications of the European Communities, Luxembourg, 1975), pp. 453–456.
  23. S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981). [CrossRef]
  24. S. Cova, A. Longoni, G. Ripamonti, “Active quenching and gating circuits for single-photon avalanche diodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982). [CrossRef]
  25. S. Cova, “Active quenching circuit for avalanche photodiodes,” U.S. Patent4,963,727 (Italian patent 22367A/88) (16October1990).
  26. R. G. W. Brown, K. D. Ridley, J. C. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: active quenching,” Appl. Opt. 26, 2383–2389 (1987). [CrossRef] [PubMed]
  27. T. O. Regan, H. C. Fenker, J. Thomas, J. Oliver, “A method to quench and recharge avalanche photodiodes for use in high rate situations,” Nucl. Instrum. Methods A326, 570–573 (1993).
  28. G. Vincent, A. Chantre, D. Boise, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50, 5484–5487 (1979). [CrossRef]
  29. R. J. McIntyre, “On the avalanche initiation probability of avalanche diodes above the breakdown voltage,” IEEE Trans. Electron Devices ED-20, 637–641 (1973). [CrossRef]
  30. W. C. Dash, R. Newman, “Intrinsic optical absorption in single crystal germanium and silicon at 77 K and 300 K,” Phys. Rev. 99, 1151–1155 (1955). [CrossRef]
  31. W. G. Oldham, R. R. Samuelson, P. Antognetti, “Triggering phenomena in avalanche diodes,” IEEE Trans. Electron Devices ED-19, 1056–1060 (1972). [CrossRef]
  32. T. Mikawa, S. Kagawa, T. Kaneda, Y. Toyama, “Crystal orientation dependence of ionization rates in germanium,” Appl. Phys. Lett. 37, 387–389 (1980). [CrossRef]
  33. B. T. Dai, C. Y. Chang, “Temperature dependence of ionization rates in Ge,” J. Appl. Phys. 42, 5198–5201 (1971). [CrossRef]
  34. A. Lacaita, P. A. Francese, S. Cova, G. Ripamonti, “Single-photon optical time-domain reflectometer at 1.3 μm with 5-cm resolution and high sensitivity,” Opt. Lett. 18, 1110–1112 (1993). [CrossRef] [PubMed]
  35. G. Ripamonti, M. Ghioni, S. Vanoli, “Photon timing OTDR: a multiphoton backscattered pulse approach,” Electron. Lett. 26, 1569–1570 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited