OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 33, Iss. 30 — Oct. 20, 1994
  • pp: 7045–7058

Differential absorption lidar system for routine monitoring of tropospheric ozone

J. A. Sunesson, A. Apituley, and D. P. J. Swart  »View Author Affiliations

Applied Optics, Vol. 33, Issue 30, pp. 7045-7058 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (1630 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A differential absorption lidar system for routine profiling of tropospheric ozone for daytime and nighttime operation is described. The system uses stimulated Raman scattering in hydrogen and deuterium of 266-nm radiation from a quadrupled Nd:YAG laser. Ozone profiles from altitudes of 600 m to approximately 5 km have been obtained with analog detection. Implementing corrections for differential Rayleigh scattering, differential absorption from oxygen, sulphur dioxide, and nitrogen dioxide, and differential aerosol extinction and backscatter can reduce the total system inaccuracy to 5–15% for a clear day and 20–30% for a hazy day, except at the top of the mixed layer. Photon counting must be installed to increase the measurement range from 5 to 15 km. An example of an application of routine measurements of tropospheric ozone profiles is given.

© 1994 Optical Society of America

Original Manuscript: March 3, 1993
Revised Manuscript: March 9, 1994
Published: October 20, 1994

J. A. Sunesson, A. Apituley, and D. P. J. Swart, "Differential absorption lidar system for routine monitoring of tropospheric ozone," Appl. Opt. 33, 7045-7058 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Kley, I. S. A. Isaksen, S. A. Penkett, “TOR, tropospheric ozone research,” EUREKA subproject proposal (EURO-TRAC scientific secretariat, Garmisch-Partenkirchen, Germany, 1987).
  2. R. Barbini, M. J. T. Milton, J. Pelon, C. Weitkamp, “TESLAS, Joint European Program for the Tropospheric Environmental Studies by Laser Sounding,” EUROTRAC subproject proposal (EUROTRAC scientific secretariat, Garmisch-Partenkirchen, Germany, 1987).
  3. I. S. McDermid, “Ground-based lidar and atmospheric studies,” Surv. Geophys. 9, 107–122 (1987). [CrossRef]
  4. J. A. Sunesson, “RIVM tropospheric ozone lidar: feasibility and definition,” RIVM-Rep. 222201002 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1990).
  5. J. A. Sunesson, A. Apituley, “RIVM Tropospheric Ozone Lidar: system description and first results,” RIVM-Rep. 222201006 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1990).
  6. R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).
  7. H. Edner, G. W. Faris, J. A. Sunesson, S. Svanberg, “Atmospheric atomic mercury monitoring using differential absorption lidar techniques,” Appl. Opt. 28, 921–930 (1989). [CrossRef] [PubMed]
  8. K. W. Rothe, U. Brinkmann, H. Walther, “Remote measurement of NO2 emission from a chemical factory by the differential absorption technique,” Appl. Phys. 4, 181–182 (1974). [CrossRef]
  9. J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-based ultraviolet differential absorption lidar (DIAL) system and measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, eds. (Springer-Verlag, Berlin, 1983), Chap. 3.
  10. H. Edner, J. A. Sunesson, S. Svanberg, “NO plume mapping by laser-radar techniques,” Opt. Lett. 13, 704–706 (1988). [CrossRef] [PubMed]
  11. E. V. Browell, A. F. Carter, S. T. Shipley, R. J. Allen, C. F. Butler, M. N. Mayo, J. H. Siviter, W. M. Hall, “NASA multipurpose airborne dial system and measurements of ozone and aerosol profiles,” Appl. Opt. 22, 522–534 (1983). [CrossRef] [PubMed]
  12. J. Pelon, G. Megie, “Ozone monitoring in the troposphere and lower stratosphere: evaluation and operation of a ground-based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982). [CrossRef]
  13. O. Uchino, M. Tokunaga, M. Maeda, Y. Miyazoe, “Differential-absorption-lidar measurement of tropospheric ozone with an excimer-Raman hybrid laser,” Opt. Lett. 8, 347–349 (1983). [CrossRef] [PubMed]
  14. A. Papayannis, G. Ancellet, J. Pelon, G. Megie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1989). [CrossRef]
  15. D. Diebel, M. Bristow, R. Zimmerman, “Stokes shifte Raman laser lines in KrF-pumped hydrogen: reduction of beam divergence by addition of helium,” Appl. Opt. 30, 626–628 (1991). [CrossRef] [PubMed]
  16. A. Luches, V. Nassisi, M. R. Perrone, “Improved conversion efficiency of XeCl radiation to the first Stokes at high pump energy,” Appl. Phys. B 47, 101–105 (1988). [CrossRef]
  17. G. Kunz, F. Swart, “Light source for dynamic testing of photo detectors,” TNO-Rep. FEL 1989–69 (TNO, Den Haag, The Netherlands, 1989).
  18. C. N. de Jonge, D. P. J. Swart, J. B. Bergwerff, “DIAL technique for NO2-detection: system quality and simulation,” RIVM-Rep. 222701001 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1991).
  19. Y. Likura, N. Sugimoto, Y. Sasano, H. Shimizu, “Improvement on lidar data processing for stratospheric aerosol measurements,” Appl. Opt. 26, 5299–5306 (1987). [CrossRef] [PubMed]
  20. H. Sang Lee, G. K. Schwemmer, C. L. Korb, M. Dombrowski, C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt. 29, 3303–3315 (1990). [CrossRef]
  21. R. E. W. Pettifer, “Signal induced noise in lidar experiments,” J. Atmos. Terr. Phys. 37, 669–673 (1975). [CrossRef]
  22. I. S. McDermid, S. M. Godin, D. T. Walsh, “Lidar measurements of stratospheric ozone and intercomparisons and validation,” Appl. Opt. 29, 4914–4923 (1989). [CrossRef]
  23. A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-sections of ozone. I. The measurements,” in Atmospheric Ozone, C. S. Zerefos, A. Ghazi, eds. (Reidel, Dordrecht, The Netherlands, 1984), pp. 606–610.
  24. A. M. Bass, R. J. Paur, “Ultraviolet absorption cross-sections of ozone” (National Bureau of Standards, Washington, D.C. 20234, personal communication, 10August1992).
  25. E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985). [CrossRef] [PubMed]
  26. E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, New York, 1976).
  27. M. W. P. Cann, J. B. Shinn, R. W. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000 K and pressures to 50 atm,” Can. J. Phys. 62, 1738–1751 (1984). [CrossRef]
  28. E. Trakhovsky, A. Ben-Shalom, U. P. Oppenheim, A. D. Devir, L. S. Balfour, M. Engel, “Contribution of oxygen to attenuation in the solar blind UV spectral region,” Appl. Opt. 28, 1588–1591 (1989). [CrossRef] [PubMed]
  29. O. Thomsen, “Messung des Absorptionswirkungsquerschnitts von Schwefeldioxid im Wellenlangebereich von 265 bis 298 nm,” Ph.D. dissertation (GKSS Forschungszentrum, Geesthacht, Germany, 1990).
  30. A. M. Bass, A. E. Ledford, A. H. Lauffer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976). [CrossRef]
  31. Laboratory of Air Research, “Luchtkwaliteit, jaarverslag 1989 (air quality, annual report 1989),” RIVM-Rep. 222101006 (National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, 1990).
  32. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” Rep. AFGL-TR-83-0187 (U.S. Air Force Geophysics Laboratory, Bedford, Mass., 1983).
  33. H. de Backer, E. P. Visser, D. de Muer, D. P. J. Swart, “Potential for meteorological bias in lidar ozone data sets resulting from the restricted frequency of measurement due to cloud cover,” J. Geophys. Res. 99, 1395–1401 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited