OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 30 — Oct. 20, 1994
  • pp: 7151–7156

Iron Boltzmann factor LIDAR: proposed new remote-sensing technique for mesospheric temperature

Jerry A. Gelbwachs  »View Author Affiliations


Applied Optics, Vol. 33, Issue 30, pp. 7151-7156 (1994)
http://dx.doi.org/10.1364/AO.33.007151


View Full Text Article

Enhanced HTML    Acrobat PDF (789 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a new LIDAR technique for middle atmospheric temperature measurement. The proposed LIDAR exploits the Fe layer in the 80–100-km altitude region. Absolute temperatures are inferred by the use of the Maxwell–Boltzmann relationship from the ratio of LIDAR returns from mesospheric Fe atoms excited at 372 and 374 nm, corresponding to the ground-state resonance line and a thermally populated resonance line, respectively. The wavelengths of the new LIDAR are favorable for capturing Rayleigh signals from the middle atmosphere. A simulation indicates that a complete temperature profile from 30 to 100 km can be acquired with the proposed LIDAR by monitoring simultaneously the Rayleigh signals and the Fe fluorescence returns excited by the same transmitter pulse.

© 1994 Optical Society of America

History
Original Manuscript: November 30, 1993
Revised Manuscript: April 22, 1994
Published: October 20, 1994

Citation
Jerry A. Gelbwachs, "Iron Boltzmann factor LIDAR: proposed new remote-sensing technique for mesospheric temperature," Appl. Opt. 33, 7151-7156 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-30-7151


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. T. Houghton, The Physics of Atmospheres (Cambridge U. Press, Cambridge, 1986).
  2. A. Hauchercorne, M. L. Chanin, P. Keckhut, P. Nedeljkovic, “LIDAR monitoring of the temperature in the middle and lower atmosphere,” Appl. Phys. B 55, 29–34 (1992). [CrossRef]
  3. C. S. Gardner, “Sodium resonance fluorescence LIDAR applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989). [CrossRef]
  4. C. Grainer, J. P. Jegou, G. Megie, “Iron atoms and metallic species in the Earth’s upper atmosphere,” Geophys. Res. Lett. 16, 243–246 (1989). [CrossRef]
  5. M. Alpers, J. Hoffner, U. von Zahn, “Iron atom densities in the polar mesosphere from LIDAR observations,” Geophys. Res. Lett. 17, 2345–2348 (1990). [CrossRef]
  6. T. J. Kane, P. H. Mui, C. S. Gardner, “Evidence for substantial seasonal variations in the structure of the mesospheric Fe layer,” Geophys. Res. Lett. 19, 405–408 (1992). [CrossRef]
  7. W. L. Wiese, G. A. Martin, “Wavelengths and transition probabilities for atoms and atomic ions,” Nat. Stand. Ref. Data Ser. 68, (National Bureau of Standards, Washington, D.C., 1980).
  8. J. R. Fuhr, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (personal communication, October1993).
  9. M. L. Chanin, A. Hauchercorne, “LIDAR observation of gravity and tidal waves in the stratosphere and mesophere,” J. Geophys. Res. 86, 9715–9721 (1981). [CrossRef]
  10. P. Keckhut, A. Hauchercorne, M. L. Chanin, “A critical review of the data base acquired for long term surveillance of the middle atmosphere by the french rayleigh LIDARs,” J. Atmos. Oceanic Technol. 10, 850–867 (1993). [CrossRef]
  11. U.S. Standard Atmosphere (National Oceanic and Atmospheric Administration, Washington, D.C., 1976).
  12. K. H. Fricke, U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by LIDAR,” J. Atmos. Terr. Phys. 47, 499–512 (1985). [CrossRef]
  13. C. Y. She, J. R. Yu, H. Latifi, R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited