OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 33, Iss. 30 — Oct. 20, 1994
  • pp: 7226–7230

Higher moments of scattered light fields by heterodyne analysis

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan  »View Author Affiliations

Applied Optics, Vol. 33, Issue 30, pp. 7226-7230 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (693 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In heterodyne detection (such as in coherent lidar) the optical local oscillator defines a single mode of the incoming-signal light field; this single-mode selectivity has been previously predicted to preserve the full fluctuation character of scattered light. This is in contrast with direct-detection schemes, as in photon-correlation spectroscopy, where aperture averaging usually reduces the range of fluctuations. Examples of Gaussian and non-Gaussian statistics in laser light scattered from a moving ground-glass screen have been studied. This simple laboratory experiment has several advantages over equivalent direct-detection schemes and has been shown to yield experimentally the theoretically predicted factorial intensity moments (up to the seventh order) that result from zero-mean, circulo-complex Gaussian statistics.

© 1994 Optical Society of America

Original Manuscript: December 20, 1993
Revised Manuscript: March 22, 1994
Published: October 20, 1994

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, "Higher moments of scattered light fields by heterodyne analysis," Appl. Opt. 33, 7226-7230 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Z. Cummins, E. R. Pike, eds., Photon Correlation and Light Beating Spectroscopy (Plenum, New York, 1974); Photon Correlation and Velocimetry (Plenum, New York, 1977).
  2. P. N. Pusey, J. M. Vaughan, “Light scattering and intensity fluctuation spectroscopy,” in Dielectric and Related Molecular Processes, M. Davies, ed. (Chemical Society, London, 1976), Vol. 2, pp. 48–105. [CrossRef]
  3. A. V. Jelalian, Laser Radar Systems (Artech, Boston, Mass., 1992).
  4. E. V. Hoversten, “Optical communication theory,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-DuBois, eds. (North-Holland, Amsterdam, 1972), pp. 1805–1862.
  5. R. M. Gagliardi, S. Karp, Optical Communications (Wiley, New York, 1976), Chap. 6.
  6. E. Jakeman, C. J. Oliver, E. R. Pike, “Measurements of the factorization properties of higher-order optical correlation functions,” J. Phys. A 1, 497–499 (1968). [CrossRef]
  7. E. Jakeman, C. J. Oliver, E. R. Pike, “A measurement of optical linewidth by photon-counting statistics,” J. Phys. A 1, 406–408 (1968). [CrossRef]
  8. D. L. Jordan, R. C. Hollins, “Measurements of Gaussian speckle statistics using both direct and heterodyne detection of CO2 laser radiation,” Opt. Acta 30, 417–423 (1983). [CrossRef]
  9. P. H. Flamant, R. T. Menzies, M. J. Kavaya, “Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets,” Appl. Opt. 23, 1412–1417 (1984). [CrossRef] [PubMed]
  10. D. Letalick, I. Renhorn, O. Steinvall, “Measured signal amplitude distributions for a coherent FM-cw CO2 laser radar,” Appl. Opt. 25, 3927–3938 (1986). [CrossRef] [PubMed]
  11. D. K. Killinger, N. Menyuk, W. E. DeFeo, “Experimental comparison of heterodyne and direct detection for pulsed differential absorption CO2 lidar,” Appl. Opt. 22, 682–689 (1983). [CrossRef] [PubMed]
  12. R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, “Characteristics of coherent lidar returns from calibration targets and aerosols,” Appl. Opt. 20, 3763–3769 (1981). [CrossRef] [PubMed]
  13. G. M. Ancellet, R. T. Menzies, “Atmospheric correlation time measurements and effects on coherent Doppler lidar,” J. Opt. Soc. Am. A 4, 367–373 (1987). [CrossRef]
  14. J. M. Vaughan, D. Brown, R. D. Callan, P. H. Davies, R. Foord, W. R. M. Pomeroy, “Correlation analysis of fluctuations in coherent lidar signals at 10.6 μm,” J. Mod. Opt. 38, 623–648 (1991). [CrossRef]
  15. J. H. Shapiro, “Correlation scales of laser speckle in heterodyne detection,” Appl. Opt. 24, 1883–1888 (1985). [CrossRef] [PubMed]
  16. R. G. Frehlich, J. J. Churnside, “Statistical properties of estimates of the moments of laser scintillation,” J. Mod. Opt. 36, 1645–1659 (1989). [CrossRef]
  17. G. Parry, P. N. Pusey, “K distributions in atmospheric propagation of light,” J. Opt. Soc. Am. 69, 796–798 (1979). [CrossRef]
  18. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976). [CrossRef]
  19. P. N. Pusey, E. Jakeman, “Non-Gaussian fluctuations in electromagnetic radiation scattered by a random phase screen. II. Application to dynamic scattering in a liquid,” J. Phys. A 8, 392–410 (1975). [CrossRef]
  20. V. Bluemel, L. M. Narducci, R. A. Tuft, “Photon-count distributions and irradiance fluctuations of a log-normally distributed light field,” J. Opt. Soc. Am. 62, 1309–1314 (1972). [CrossRef]
  21. Strictly, this is true only for the simple classical picture presented here, in which the field cannot fall to zero. The square of this field represents the relative probability for detection of a photon, and, although this probability similarly does not fall to zero, it is clearly possible to obtain a count of zero over a selected short time scale with a sufficiently weak signal.
  22. H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964). [CrossRef]
  23. P. G. Cummins, E. J. Staples, “Particle size measurements on turbid latex systems using heterodyne intensity autocorrelation spectroscopy,” J. Phys. E 14, 1171–1177 (1981). [CrossRef]
  24. S. Sasaki, M. Mandel, “Equipment for photon-correlation spectroscopy measurements in the heterodyne mode,” J. Phys. E 17, 738–740 (1984). [CrossRef]
  25. P. J. Nash, T. A. King, “A heterodyne photon-correlation spectrometer of advanced design,” J. Phys. E 18, 319–327 (1985). [CrossRef]
  26. R. G. W. Brown, “Dynamic light scattering using monomode optical fibers,” Appl. Opt. 26, 4846–4851 (1987). [CrossRef] [PubMed]
  27. J. Ricka, “Dynamic light scattering with single-mode and multimode receivers,” Appl. Opt. 32, 2860–2875 (1993). [CrossRef] [PubMed]
  28. M. Harris, R. Loudon, T. J. Shepherd, J. M. Vaughan, “Optical amplification and spontaneous emission in an Ar+ discharge,” J. Mod. Opt. 39, 1195–1203 (1992). [CrossRef]
  29. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966). [CrossRef] [PubMed]
  30. B. J. Rye, R. G. Frehlich, “Optical truncation and optical efficiency of an apertured coherent lidar focused on an incoherent backscatter target,” Appl. Opt. 31, 2891–2899 (1992). [CrossRef] [PubMed]
  31. G. N. Pearson, M. Harris, E. Jakeman, D. Letalick, “Spectral filtering of light possessing non-Gaussian statistics,” J. Mod. Opt. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited