OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 34 — Dec. 1, 1994
  • pp: 7875–7882

Design of antireflection gratings with approximate and rigorous methods

Ralf Bräuer and Olof Bryngdahl  »View Author Affiliations


Applied Optics, Vol. 33, Issue 34, pp. 7875-7882 (1994)
http://dx.doi.org/10.1364/AO.33.007875


View Full Text Article

Enhanced HTML    Acrobat PDF (801 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-spatial-frequency gratings can be used as an alternative to thin-film antireflection coatings to reduce the reflectivity at the boundary between two different media. In the case of one-dimensional gratings, the conditions on the grating structure can be approximately determined by the effective medium theory (EMT) in combination with the thin-film theory. For two-dimensional gratings, which can be used to reduce the polarization sensitivity, a corresponding EMT does not exist. We present an estimation of the effective permittivity of two-dimensional gratings. The range of validity of the antireflection grating design by the EMT is determined by the use of rigorous electromagnetic theory. Beyond the validity of EMT, rigorous theory is used to design antireflection gratings with a maximized feature size.

© 1994 Optical Society of America

History
Original Manuscript: June 14, 1994
Published: December 1, 1994

Citation
Ralf Bräuer and Olof Bryngdahl, "Design of antireflection gratings with approximate and rigorous methods," Appl. Opt. 33, 7875-7882 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-34-7875

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited