OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 33, Iss. 5 — Feb. 10, 1994
  • pp: 744–757

Submicrometer defect detection in periodic structures by photorefractive holography: system design and performance

Craig Uhrich and Lambertus Hesselink  »View Author Affiliations

Applied Optics, Vol. 33, Issue 5, pp. 744-757 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (2558 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have built an adaptive system capable of detecting submicrometer defects in periodic structures by using real-time holography in photorefractive crystals. We summarize the design and optimization of the defect-enhancement system. We present representative results of 0.2- to 0.5-μm diameter defect detection on two different periodic substrates: chrome-on-glass masks and patterned silicon wafers. On patterned silicon we detect 94% of the 0.5-μm diameter defects with three false positives, while inspecting an area greater than 1 mm2 in 20 s or less. The throughput on the glass masks is somewhat less. To the best of our knowledge, these defects have an area 100 times smaller than those previously detected with any real-time holographic technique.

© 1994 Optical Society of America

Original Manuscript: August 17, 1992
Revised Manuscript: May 25, 1993
Published: February 10, 1994

Craig Uhrich and Lambertus Hesselink, "Submicrometer defect detection in periodic structures by photorefractive holography: system design and performance," Appl. Opt. 33, 744-757 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. E. Dom, V. H. Brecher, R. Bonner, J. S. Batchelder, R. S. Jaffe, “The P300: a system for automatic patterned wafer inspection,” Mach. Vis. Appl. 1, 205–211 (1988). [CrossRef]
  2. R. L. Fusek, L. H. Lin, K. Harding, S. Gustafson, “Holographic optical processing for submicrometer defect detection,” Opt. Eng. 24, 731–734 (1985).
  3. E. Ochoa, J. W. Goodman, L. Hesselink, “Real-time enhancement of defects in a periodic mask using photorefractive Bi12SiO20,” Opt. Lett. 10, 430–432 (1985). [CrossRef] [PubMed]
  4. J. O. White, A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980). [CrossRef]
  5. L. Pichon, J. P. Huignard, “Dynamic joint-Fourier-transform correlator by Bragg diffraction in photorefractive B12SiO20 crystals,” Opt. Commun. 36, 277–280 (1981). [CrossRef]
  6. M. G. Nicholson, I. R. Cooper, G. G. Gibbons, C. R. Petts, “Optimization of an updatable optical image correlator,” Opt. Eng. 26, 445–452 (1987).
  7. L. H. Lin, D. L. Cavan, R. B. Howe, R. E. Graves, “A holographic photomask defect inspection system,” in Optical Microlithography IV, H. L. Stover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.538, 110–116 (1985).
  8. D. L. Cavan, L. H. Lin, R. B. Howe, R. E. Graves, R. L. Fusek, “Patterned wafer inspection using laser holography and spatial frequency filtering.” J. Vac. Sci. Technol. B 6, 1934–1939 (1988). [CrossRef]
  9. A. P. Ghosh, R. R. Dube, “Real-time defect inspection of periodic patterns using self-pumped barium titanate crystal,” Opt. Commun. 77, 135–138 (1990). [CrossRef]
  10. C. J. Gaeta, P. V. Mitchell, D. M. Pepper, “Real-time defect enhancement diagnostic system using a spatial light modulator and a phase-conjugate mirror,” in OSA Annual Meeting, Vol. 17 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper THI6.
  11. C. Uhrich, L. Hesselink, “Optical surface inspection using real time Fourier transform holography in photorefractives,” Appl. Opt. 27, 4497–4503 (1988). [CrossRef] [PubMed]
  12. M. A. Taubenblatt, J. B. Batchelder, “Patterned wafer inspection using spatial filtering for the cluster environment,” Appl. Opt. 31, 3354–3362 (1992). [CrossRef] [PubMed]
  13. C. Uhrich, L. Hesselink, “Submicrometer defect enhancement in periodic structures by using photorefractive holography,” Opt. Lett. 17, 1087–1089 (1992). [CrossRef] [PubMed]
  14. T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985). [CrossRef]
  15. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals I. Steady state,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  16. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  17. F. Vachss, L. Hesselink, “Holographic beam coupling in anisotropic photorefractive media,” J. Opt. Soc. Am. A 4, 325–339 (1987). [CrossRef]
  18. A. Marrakchi, R. V. Johnson, A. R. Tanguary, “Polarization properties of photorefractive diffraction in electrooptic and optically active sillenite crystals (Bragg regime),” J. Opt. Soc. Am. B 3, 321–336 (1986). [CrossRef]
  19. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif.1968), pp. 77–90.
  20. R. N. Bracewell, Fourier Transform and Its Applications (McGraw-Hill, New York, 1986), p. 214.
  21. M. Born, E. Wolf, Principles of Optics, 6th ed., (Pergamon, Oxford, 1980), p. 441.
  22. G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8, 483–489 (1991); J. Opt. Soc. Am. A 9, 844–845 (1991). [CrossRef]
  23. G. L. Wojcik, D. K. Vaughan, L. K. Galbraith, “Calculation of light scatter from structures on silicon surfaces,” in Lasers in Microlithography, J. S. Batchelder, D. J. Ehrlich, J. Y. Tsao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.774, 21–31 (1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited