OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 6 — Feb. 20, 1994
  • pp: 1070–1078

Light-scattering technique for the study of orientation and deformation of red blood cells in a concentrated suspension

A. H. Gandjbakhche, P. Mills, and P. Snabre  »View Author Affiliations


Applied Optics, Vol. 33, Issue 6, pp. 1070-1078 (1994)
http://dx.doi.org/10.1364/AO.33.001070


View Full Text Article

Enhanced HTML    Acrobat PDF (1032 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The backscattered and transmitted diagrams of He–Ne laser light illuminating a concentrated suspension of red blood cells (RBC's) are investigated. The shapes of these diagrams are closely related to the state of the suspension (at rest or submitted to a simple shear flow) and to the parameters that govern the non-Newtonian behavior of the blood suspension (such as the viscosity of the suspending medium and the volume concentration of the cells). An asymmetry in the backscattering diagram, which is absent on transmitted diagrams, is observed when the suspension is in a simple shear flow. This asymmetry is related to the deformation and orientation of the RBC's. The propagation of light through the suspension is modeled and a set of Monte Carlo simulations is performed to substantiate the inference that the relative variation of the backscattered flux is proportional to the gradients of deformation of the RBC's, and that such gradients must be known in order to apply a rheological model describing the non-Newtonian behavior of RBC membranes.

© 1994 Optical Society of America

History
Original Manuscript: December 30, 1991
Revised Manuscript: March 31, 1993
Published: February 20, 1994

Citation
A. H. Gandjbakhche, P. Mills, and P. Snabre, "Light-scattering technique for the study of orientation and deformation of red blood cells in a concentrated suspension," Appl. Opt. 33, 1070-1078 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-6-1070


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Skalak, A. Tozeren, R. P. Zaroa, S. Chien, “Strain function of RBC membranes,” Biophys. J. 13, 245–264 (1973). [CrossRef] [PubMed]
  2. E. A. Evans, R. M. Hochmuth, “Membrane viscoelasticity,” Biophys. J. 16, 1 (1976). [CrossRef] [PubMed]
  3. E. A. Evans, R. Waugh, “Osmotic correction to elastic area compressibility measurements on red cell membrane,” Biophys. J. 20, 307 (1977). [CrossRef] [PubMed]
  4. T. M. Fischer, H. Schmid-Schonbein, “Tank treading motion of red cell membranes in viscosimetric flow: behavior in intracellular and extracellular markers (with film),” Blood Cells 3, 351–365 (1977).
  5. H. J. Mieselman, “Morphological determinants of red blood cell deformability,” Scand. J. Clin. Lab. Invest. 41, Suppl. 156, 27–34 (1981). [CrossRef]
  6. M. Bessis, N. Mohandas, “A diffractometric method for the measurement of cellular deformability,” Blood Cells 1, 315–321 (1975).
  7. M. R. Clark, N. Mohandas, S. B. Shohet, “Osmotic gradient ektacytometry: comprehensive characterization of RBC volume and surface maintenance,” Blood 61, 899–910 (1983). [PubMed]
  8. D. L'Huillier, “Phenomenology of hydrodynamic interactions in suspension of weakly deformable particles,” J. Phys. (Paris) 48, 1887–1902 (1987).
  9. L. Reynolds, C. Johnson, A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters,” Appl. Opt. 15, 2059–2067 (1976). [CrossRef] [PubMed]
  10. J. M. Schmitt, J. D. Meuidl, F. G. Mihn, “An integrated circuit-based optical sensor for in vivo measurement of blood oxygenation,” IEEE Trans. Biomed. Eng. BME-33, 98–107 (1986). [CrossRef]
  11. K. M. Case, P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, Mass., 1967).
  12. V. Twersky, “Absorption and multiple scattering by biological suspensions,” J. Opt. Soc. Am. 60, 1084–1093 (1970). [CrossRef] [PubMed]
  13. J. M. Steinke, A. P. Sheperd, “Role of light scattering in whole blood oximetry,” IEEE Trans. Biomed. Eng. BME-33, 294–301 (1986). [CrossRef]
  14. R. F. Bonner, R. Nossal, S. Havlin, G. H. Weiss, “Model of photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987). [CrossRef] [PubMed]
  15. R. Nossal, J. E. Kiefer, G. H. Weiss, R. F. Bonner, H. Taitelbaum, S. Havlin, “Photon migration in layered media,” Appl. Opt. 27, 3382–3391 (1988). [CrossRef] [PubMed]
  16. R. A. J. Groenhuis, H. A. Ferweda, J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements, 1: theory,” Appl. Opt. 22, 2456–2462 (1983). [CrossRef] [PubMed]
  17. S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues: II comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1163–1173 (1989).
  18. J. M. Masick, G. Jarry, B. de Cosnac, A. Lansiant, B. M. Hung, “A simulation method for the study of laser transillumation of biological tissues,” Ann. Biomed. Eng. 12, 221–304 (1984).
  19. E. A. Evans, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4, 335–349 (1972). [CrossRef] [PubMed]
  20. B. Barer, S. Joseph, “Refractometry of living cells,” J. Microscop. Sci. 95, 399–412 (1954).
  21. B. T. Stocke, M. Mikkelson, A. Elgsacter, “Some viscoelastic properties of human erythrocyte spectrin networks end-linked in vitro,” Biochim. Biophys. Acta Lib. 816, 110–121 (1985).
  22. S. Chien, G. K. Sun, R. Skalak, S. Usami, A. Tozeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24, 463–487 (1978). [CrossRef] [PubMed]
  23. J. Dufaux, D. Quemada, P. Mills, “Determination of rheological properties of blood by Couette viscosimetry,” J. Phys. Appli. (Paris) 15, 1357–1367 (1980).
  24. D. Quemada, “Rheology of concentrated disperse systems. III. General feature of the proposed non-Newtonian model. Comparison with experimental data,” Rheol. Acta 17, 643–653 (1978). [CrossRef]
  25. A. H. Gandjbakhche, P. Mills, P. Snabre, “A light scattering technique to study the red blood cells membrane structure and their rheological properties,” (in preparation).
  26. P. Snabre, “Agrégation des globules rouges en présence de Dextran—rhéologie, des suspensions concentrées de particules déformables,” These d'Etat (Université Paris VII, Paris, 1988).
  27. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), pp. 161–164.
  28. J. C. Ravey, “Diffusion de la lumière: application aux particules de grande taille comme les globules rouges,” in Techniques Avancées en Hemorhéologie (Institut National Polytechnique de Lorraine, Nancy, France, 1983), pp. 505–542.
  29. P. Snabre, M. Bitbol, P. Mills, “Cell disaggregation behavior in shear flow,” Biophys. J. 51, 795–805 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited