OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 7 — Mar. 1, 1994
  • pp: 1154–1169

Diversity and feasibility of direct bonding: a survey of a dedicated optical technology

Jan Haisma, Bert A. C. M. Spierings, Udo K. P. Biermann, and Aart A. van Gorkum  »View Author Affiliations


Applied Optics, Vol. 33, Issue 7, pp. 1154-1169 (1994)
http://dx.doi.org/10.1364/AO.33.001154


View Full Text Article

Enhanced HTML    Acrobat PDF (4028 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The aim of this paper is to review almost a decade of direct-bonding activities at Philips Research including the diversity and feasibility of direct bonding. The bondability of a material is determined by its geometrical shape and mechanical, physical, and chemical surface states. Physically direct bonding provides a vacuumtight bond, which is jointless and glueless, and it permits engineering of the interfaces to be bonded. Layers can be buried, and reflective–lossless bonds between optical elements can be created. A variety of materials are investigated: (refractory) metals, a semimetal, boron, diamond, a carbide, fluorides, nitrides, oxides, and a chalcogenide. The applications that we describe relate to interface engineering, waveguiding, and the direct bonding of a fiber plate.

© 1994 Optical Society of America

History
Original Manuscript: December 4, 1992
Revised Manuscript: June 7, 1993
Published: March 1, 1994

Citation
Jan Haisma, Bert A. C. M. Spierings, Udo K. P. Biermann, and Aart A. van Gorkum, "Diversity and feasibility of direct bonding: a survey of a dedicated optical technology," Appl. Opt. 33, 1154-1169 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-7-1154


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Gösele, T. Abe, J. Haisma, M. A. Schmidt, eds., Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications (Electrochemical Society, Pennington, N.J., 1992).
  2. H. C. Hamaker, “The London–van der Waals attraction between spherical particles,” Physica 4, 1058–1071 (1937). [CrossRef]
  3. M. J. Sparnaay, “Four notes on van der Waals forces,” J. Colloid Interface Sci. 91, 307–319 (1983). [CrossRef]
  4. E. M. Lifshitz, “The theory of molecular attractive forces between solids,” Sov. Phys. JETP 2, 73–83 (1956).
  5. J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, J. A. Pals, “Silicon-on-insulator wafer bonding–wafer thining; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989). [CrossRef]
  6. H. G. van Bueren, J. Haisma, H. de Lang, “A small and stable continuous gas laser,” Phys. Lett. 2, 340–341 (1962). [CrossRef]
  7. J. Haisma, C. L. Adema, J. M. M. Pasmans, J. H. Walters, “Tunable Fabry–Perot interferometer and x-ray display having such an interferometer,” U.S. patent4,547,801 (15October1985).
  8. J. Haisma, C. L. Adema, C. L. Alting, R. Brehm, “Methods of bonding two parts together,” U.S. patent4,810,318 (7March1989).
  9. J. A. G. Slatter, H. E. Brockman, J. Haisma, “Method of manufacturing a semiconductor device including a static induction transistor,” U.S. patent5,089,431 (18February1992).
  10. M. Shimbo, K. Fukuda, Y. Ohwada, “Method of manufacturing semiconductor substrate,” European patent application0,161,740 (13February1985).
  11. L. Cristel, K. Petersen, P. Barth, F. Pourahmadi, J. Mallon, J. Bryzek, “Single-crystal silicon pressure sensors with 500× overpressure protection,” Sensors Actuators A21–A23, 84–88 (1990). [CrossRef]
  12. For a state of the art see Digest of Technical Papers, Transducers ’91: 1991 International Conference on Solid-State Sensors and Actuators (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 177–180, 452–455, 672–675, 832–835, 931–934.
  13. H.-J. Quenzer, W. Benecke, “Low temperature silicon wafer bonding for micromechanical applications,” in Ref. 1, pp. 92–101.
  14. R. W. Bower, M. S. Ismael, S. N. Farrens, “Aligned wafer bonding: a key to three dimensional microstructures,” J. Electrochem. Mater. 20, 383–387 (1991). [CrossRef]
  15. W. P. Maszara, “Semiconductor wafer bonding,” in Ref. 1, pp. 3–17.
  16. J. Haisma, T. M. Michielsen, J. A. Pals, “Method of manufacturing semiconductor devices,” U.S. patent4,983,251 (8January1991).
  17. M. Horiuchi, S. Aoki, “A mechanism of silicon wafer bonding,” in Ref. 1, pp. 48–62.
  18. C. Harendt, C. E. Hunt, W. Appel, H.-G. Graf, B. Höfflinger, E. Penteker, “Silicon on insulator material by wafer bonding,” J. Electron. Mater. 20, 267–277 (1991). [CrossRef]
  19. L. M. Sheppard, “Advances of processing of ferroelectric thin films,” Am. Ceram. Soc. Bull. 71, 85–95 (1992).
  20. Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969). [CrossRef]
  21. P. A. M. v. d. Heide, M. J. Baan-Hofman, H. J. Ronde, “Etching of thin SiO2 layers using wet HF gas,” J. Vac. Sci. Technol. A 7, 1719–1723 (1989). [CrossRef]
  22. E. V. Golikova, V. I. Kuchuk, L. L. Molchanova, Yu. M. Chernoberezhskii, “Electrophoretic behavior of dispersions of natural diamond and their stability against aggregation,” Colloid J. (USSR) 45, 771–775 (1983).
  23. Yu. M. Chernoberezhskii, O. V. Klochkova, V. I. Kuchuk, E. V. Golikova, “Electrophoretic behaviour of an aqueous dispersion of natural diamond in AlCl3 solutions,” Colloid J. (USSR) 48, 516–519 (1986).
  24. J. Haisma, F. J. H. M. van der Kruis, G. A. C. M. Spierings, J. M. Oomen, A. M. J. G. Fey, “Damage-free tribochemical polishing of diamond at room temperature: a finishing technology,” Precis. Eng. 14, 20–27 (1992). [CrossRef]
  25. J. M. M. Pasmans, J. Haisma, “An environmental-nonpolluting antireflective coating for ZnSe optics at CO2-laser wavelengths,” Philips J. Res. 41, 385–390 (1986).
  26. J. Haisma, G. A. C. M. Spierings, J. G. van Lierop, H. F. van den Berg, “Method of bonding together two bodies with silicon oxide and practically pure boron,” U.S. patent5,054,683 (8October1991).
  27. J. Israelachvili, P. McGuiggan, R. Horn, “Basic physics of interactions between surfaces in dry, humid and aqueous environments,” in Ref. 1, pp. 33–47.
  28. O. Engström, S. Bengtsson, “Electrical characterization of bonding interfaces,” in Ref. 1, pp. 295–310.
  29. C. Parkes, E. Murray, H. S. Gamble, B. M. Armstrong, S. T. N. Mitchell, G. A. Armstrong, “Characterization of electronic devices employing silicon bonding technology,” in Ref. 1, pp. 321–330.
  30. F. A. Stevie, E. P. Martin, P. M. Kahora, J. T. Cargo, A. K. Nanda, A. S. Harrus, A. J. Muller, H. W. Krautter, “Boron contamination of surfaces in silicon microelectronics processing: characterization and causes,” J. Vac. Sci. Technol. A 9, 2813–2816 (1991). [CrossRef]
  31. T. Abe, K. Ohki, M. Pawlik, J. M. Heddleson, R. T. Hilard, P. Rai-Choudury, “Silicon wafer bonding process characterization by the spreading resistance and point contact I–V techniques,” in Ref. 1, pp. 311–320.
  32. F. P. Widdershoven, J. Haisma, J. P. M. Naus, “Boron contamination and antimony segregation at the interface of directly bonded wafers,” J. Appl. Phys. 68, 6253–6258 (1990). [CrossRef]
  33. M. A. Huff, A. D. Nikolich, M. A. Schmidt, “Fabrication issues in the design of sealed cavity microstructures using silicon wafer bonding,” in Ref. 1, pp. 239–248.
  34. G. Cha, W.-S. Yang, D. Feijóo, W. J. Taylor, R. Stengle, U. Gösele, “Silicon wafers with cavities bonded in different atmospheres,” in Ref. 1, pp. 249–259.
  35. J. Haisma, C. L. Alting, T. M. Michielsen, “Laser welding of wringed surfaces,” U.S. patent5,009,689 (23April1991).
  36. M. L. Geyselaers, J. Haisma, F. P. Widdershoven, T. M. Michielsen, A. H. Reader, “Defect structures in laser-fused Si–SiO2 wafers,” Appl. Phys. Lett. 54, 1311–1313 (1989). [CrossRef]
  37. U. K. P. Biermann, G. A. C. M. Spierings, F. J. H. M. van der Kruis, J. Haisma, “Method of manufacturing a light-conducting device,” U.S. patent4,994,139 (19February1991).
  38. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1987).
  39. A. Katzir, ed., Optical Fibers in Medicine, Proc. Soc. Photo-Opt. Instrum. Eng. 1067 (1989).
  40. K. J. Budde, W. J. Holtzapfel, “Detection of volatile organic surface contaminations arising from wafer boxes and cleaning processes,” in Ref. 1, pp. 271–286.
  41. T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Nakazato, “Silicon wafer bonding mechanism for silicon-on-insulator,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990). [CrossRef]
  42. G. G. Goetz, “Generalized reaction bonding,” in Ref. 1, pp. 65–72.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited