OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 7 — Mar. 1, 1994
  • pp: 1180–1186

Waveguide holographic elements recorded by guided modes

Liviu Singher and Joseph Shamir  »View Author Affiliations


Applied Optics, Vol. 33, Issue 7, pp. 1180-1186 (1994)
http://dx.doi.org/10.1364/AO.33.001180


View Full Text Article

Enhanced HTML    Acrobat PDF (1144 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recording holographic optical elements in planar waveguides with both interfering beams being guided modes has certain advantages. We show that such holograms can be efficiently recorded when only a small fraction of the guided modes penetrates the recording material that is deposited outside the main guiding region. An integrated optic wavelength-division demultiplexer is analyzed and implemented as a specific example. In this example the holographic grating also acts as a focusing element; thus no additional collimating or focusing lenses are required.

© 1994 Optical Society of America

History
Original Manuscript: August 4, 1992
Revised Manuscript: May 3, 1993
Published: March 1, 1994

Citation
Liviu Singher and Joseph Shamir, "Waveguide holographic elements recorded by guided modes," Appl. Opt. 33, 1180-1186 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-7-1180


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. G. Hall, “Optical waveguide diffraction gratings: coupling between guided modes,” Prog. Opt. 29, 3–63 (1991).
  2. R. P. Kenan, “Theory of diffraction of guided optical waves by thick holograms,” J. Appl. Phys. 46, 4545–4551 (1975). [CrossRef]
  3. W. J. Tomlinson, “Wavelength multiplexing in multimode optical fibers,” Appl. Opt. 16, 2180–2194 (1977). [CrossRef] [PubMed]
  4. W. Lukosz, A. Wurthrich, “Holography with evanescent waves, I. Theory of diffraction efficiency for s-polarized light,” Optik, 41, 191–211 (1974).
  5. W. Lukosz, A. Wurthrich, “Hologram recording and readout with evanescent field of guided waves,” Opt. Commun. 19, 232–235 (1976). [CrossRef]
  6. A. Wüthrich, W. Lukosz, “Holography with guided optical waves I,” Appl. Phys. 21, 55–64 (1980). [CrossRef]
  7. A. Wüthrich, W. Lukosz, “Holography with guided optical waves II,” Appl. Phys. 22, 161–170 (1980). [CrossRef]
  8. S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986). [CrossRef]
  9. P. J. Cronkite, G. N. Lawrence, “Focusing grating coupler design method using holographic optical elements,” Appl. Opt. 27, 679–683 (1988). [CrossRef] [PubMed]
  10. H. J. Caulfield, Q. Huang, J. Shamir, “Wide field of view transmission holography,” Opt. Commun. 86, 487–490 (1991). [CrossRef]
  11. V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, “Holographic formation of gratings in optical waveguiding layers,” J. Appl. Phys. 46, 1214–1215 (1975). [CrossRef]
  12. C. De Bernardi, S. Morasca, C. Rigo, B. Sordo, A. Stano, “Wavelength demultiplexer integrated on AlGaInAs/InP for 1.5 μm operation,” Electron. Lett. 25, 1488–1489 (1989). [CrossRef]
  13. M. Gibbon, G. H. B. Thompson, S. J. Clements, D. J. Moule, C. B. Rogers, C. G. Cureton, “Optical performance of integrated 1.5 μm grating wavelength-demultiplexer on InP-based waveguide,” Electron. Lett. 25, 1441–1442 (1989). [CrossRef]
  14. B. Moslehi, P. Harvey, J. Ng, T. Jannson, “Fiber-optic wavelength-division multiplexing and demultiplexing using volume holographic gratings,” Opt. Lett. 14, 1088–1090 (1989). [CrossRef] [PubMed]
  15. F. Sogawa, Y. Hori, M. Kato, “Fabrication of aberration-free focusing grating couplers,” Appl. Opt. 29, 5103–5105 (1990). [CrossRef] [PubMed]
  16. I. R. Croston, T. P. Young, “Design of an InGaAlAs/InP ‘3mi’ wavelength division demultiplexer employing a novel mode transformer,” Electron. Lett. 26, 336–337 (1990). [CrossRef]
  17. S. Ura, M. Morisawa, T. Suhara, H. Nishihara, “Integrated optic wavelength demultiplexer using a coplanar grating lens,” Appl. Opt. 29, 1369–1373 (1990). [CrossRef] [PubMed]
  18. J. P. Lin, S. Thaniyavarn, “Four-channel Ti:LiNbO3 WDM for 1.3 μm wavelength operation,” Opt. Lett. 16, 473–475 (1991). [CrossRef] [PubMed]
  19. Y. Amitai, I. A. Erteza, J. W. Goodman, “Recursive design of a holographic focusing grating coupler,” Appl. Opt. 30, 3886–3890 (1991). [CrossRef] [PubMed]
  20. R. Grange, M. Laget, “Holographic diffraction gratings generated by aberrated wave fronts: application to a high-resolution far-ultraviolet spectrograph,” Appl. Opt. 30, 3598–3603 (1991). [CrossRef] [PubMed]
  21. K. Wagatsuma, H. Sakaki, S. Saito, “Mode conversion and optical filtering of obliquely incident waves in corrugated waveguide filters,” IEEE J. Quantum Electron. QE-15, 632–637 (1979). [CrossRef]
  22. T. Suhara, Y. Handa, H. Nishihara, J. Koyama, “Monolithic integrated microgratings and photodiodes for wavelength demultiplexing,” Appl. Phys. Lett. 40, 120–122 (1982). [CrossRef]
  23. Z. Q. Lin, S. T. Zhou, W. S. C. Chang, S. Forouhar, J. M. Delavaux, “A generalized two-dimensional coupled-mode analysis of curved and chirped periodic structures in open dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-29, 881–890 (1981).
  24. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991).
  25. G. F. Carrier, C. E. Pearson, Partial Differential Equations (Academic, London, 1976), p. 152.
  26. I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, London, 1980), p. 955.
  27. T. Tamir, ed., Integrated Optics, Vol. 7 of Topics in Applied Physics (Springer-Verlag, Berlin, 1979), p. 47.
  28. M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986). [CrossRef]
  29. ISOPOLY K-747 is a negative photoresist manufactured by Kodak and refined and distributed by Micro-Image Technology.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited