OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 7 — Mar. 1, 1994
  • pp: 1279–1285

Diffusion-based model of pulse oximetry: in vitro and in vivo comparisons

David R. Marble, David H. Burns, and Peter W. Cheung  »View Author Affiliations


Applied Optics, Vol. 33, Issue 7, pp. 1279-1285 (1994)
http://dx.doi.org/10.1364/AO.33.001279


View Full Text Article

Enhanced HTML    Acrobat PDF (916 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A model of pulse oximetry is developed based on the three-dimensional photon diffusion theory. To test the applicability of the model, an in vitro assay was developed. Three different scattering levels and six different relative dye concentrations were analyzed. Average percent errors of 13.9% were obtained over the full range of the study. An in vivo clinical study of two pulse oximeter probes with different spectral characteristics was compared with results estimated by the model. The model correctly predicted the changes in pulse oximeter response resulting from the wavelength changes. A χ2 test gave a probability of 20% that the model fit the data. These results demonstrated the utility of the photon diffusion theory for the modeling of tissue optics.

© 1994 Optical Society of America

History
Original Manuscript: June 9, 1992
Revised Manuscript: February 22, 1993
Published: March 1, 1994

Citation
David R. Marble, David H. Burns, and Peter W. Cheung, "Diffusion-based model of pulse oximetry: in vitro and in vivo comparisons," Appl. Opt. 33, 1279-1285 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-7-1279

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited