OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 7 — Mar. 1, 1994
  • pp: 1293–1298

Acousto-optic low-frequency shifter

M. G. Gazalet, M. Ravez, F. Haine, C. Bruneel, and E. Bridoux  »View Author Affiliations


Applied Optics, Vol. 33, Issue 7, pp. 1293-1298 (1994)
http://dx.doi.org/10.1364/AO.33.001293


View Full Text Article

Enhanced HTML    Acrobat PDF (728 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Here a large deflection angle, low optical frequency-shift acousto-optic device is presented. This is realized by two successive acousto-optic interactions in the same cell. The relevant parameters of operation are analyzed in detail. A practical case with paratellurite material is then considered. Results from numerical computations leading to practical design parameters are given and compared with experimental ones.

© 1994 Optical Society of America

History
Original Manuscript: July 9, 1992
Revised Manuscript: January 26, 1993
Published: March 1, 1994

Citation
M. G. Gazalet, M. Ravez, F. Haine, C. Bruneel, and E. Bridoux, "Acousto-optic low-frequency shifter," Appl. Opt. 33, 1293-1298 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-7-1293


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. T. Lee, “Optical-gyroscope application of efficient crossed-channel acoustooptic devices,” Appl. Phys. B 35, 113–118 (1984). [CrossRef]
  2. P. F. Wysocki, M. J. Digonnet, B. Y. Kim, “Broad-spectrum, wavelength-swept, erbium-doped fiber laser at 1.55 μm,” Opt. Lett. 15, 879–881 (1990). [CrossRef] [PubMed]
  3. R. F. Cahill, E. Udd, “Phase-nulling fiber-optic laser gyro,” Opt. Lett. 4, 93–95 (1979). [CrossRef] [PubMed]
  4. N. Ohgi, M. Kondoh, M. Shimizu, “Optical fiber gyroscope with integrated optical frequency modulator,” in OFS’84, proceedings of the Second International Conference on Optical Fiber Sensors (Papers Nachachtentechnische Geschlischaft im VDE, Stuttgart, 1984), pp. 297–300.
  5. J. L. Davis, S. Ezekiel, “Techniques for shot-noise-limited inertial rotation measurement using a multiturn fiber sagnac interferometer,” in Laser Inertial Rotation Sensors, S. Ezekiel, G. E. Knausenberger, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131–136 (1978).
  6. P. Debye, F. W. Sears, “On the scattering of light by supersonic waves,” Proc. Natl. Acad. Sci. USA 18, 409–414 (1932). [CrossRef] [PubMed]
  7. R. Lucas, P. Biquart, “Propriétés optiques des milieux solides et liquides soumis aux vibrations élastiques ultra sonores,” J. Phys. Radium 3, 464–477 (1932). [CrossRef]
  8. A. B. Bathia, W. J. Noble, “Diffraction of light by ultrasonic waves—I General theory,” Proc. R. Soc. London Ser. A 220, 356–368 (1953). [CrossRef]
  9. I. C. Chang, “I. Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 3–22 (1976).
  10. E. I. Gordon, “A review of acousto-optical deflection and modulation devices,” Proc. IEEE 54, 1391–1401 (1966). [CrossRef]
  11. Y. Ohmachi, N. Uchida, N. Nizeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164–167 (1972). [CrossRef]
  12. T. Yano, A. Watanabe, “Acousto-optic figure of merit of TeO2 for circularly polarized light,” J. Appl. Phys. 45, 1243–1245 (1974). [CrossRef]
  13. K. Yasutake, K. Sugiura, H. Inoue, A. Kakeuchi, M. Uemura, K. Yoshii, H. Kawabe, “Dislocations and ultrasonic attenuation in paratellurite,” Phys. Status Solidi A 125, 489–502 (1991). [CrossRef]
  14. J. Neev, F. V. Kowalski, “Optical frequency scanning without deflection using an acoustooptic modulator,” IEEE J. Quantum Electron. 26, 1682–1685 (1990). [CrossRef]
  15. Z. Y. Cheng, C. S. Tsai, “Baseband integrated acousto-optic frequency shifter,” Appl. Phys. Lett. 60, 12–14 (1992). [CrossRef]
  16. N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971). [CrossRef]
  17. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974). [CrossRef]
  18. A. W. Warner, D. L. White, W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489–4495 (1972). [CrossRef]
  19. T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975). [CrossRef]
  20. J. M. Rouvaen, M. G. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979). [CrossRef]
  21. A. Fukumoto, M. Kawabuchi, H. Hayami, “Polarization considerations in the operation of two-dimensional TeO2 abnormal Bragg deflector,” Appl. Opt. 14, 812–813 (1975). [CrossRef] [PubMed]
  22. M. S. Kharusi, G. W. Farnell, “Observation of optical activity in Brillouin scattering experiments,” Can. J. Phys. 47, 2719–2725 (1969). [CrossRef]
  23. R. S. Seymour, “Acoustooptic Bragg diffraction in anisotropic optically active media,” Appl. Opt. 29, 822–826 (1990). [CrossRef] [PubMed]
  24. T. M. Smith, A. Korpel, “Measurement of light-sound interaction efficiency in solids,” IEEE J. Quantum Electron. QE-1, 283–284 (1965). [CrossRef]
  25. E. I. Gordon, “Figures of merit for acousto-optic deflection and modulation devices,” IEEE J. Quantum Electron. QE-2, 104–105 (1966). [CrossRef]
  26. R. W. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. QE-3, 85–93 (1967). [CrossRef]
  27. E. G. H. Lean, C. F. Quate, H. J. Shaw, “Continuous deflection of laser beams,” Appl. Phys. Lett. 10, 48–51 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited