OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 8 — Mar. 10, 1994
  • pp: 1498–1506

Symbolic substitution modified signed-digit optical adder

David Casasent and Paul Woodford  »View Author Affiliations


Applied Optics, Vol. 33, Issue 8, pp. 1498-1506 (1994)
http://dx.doi.org/10.1364/AO.33.001498


View Full Text Article

Enhanced HTML    Acrobat PDF (1077 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high-accuracy fixed-point optical adder that operates in parallel on many long words and that uses a pipelined correlator architecture is described. A symbolic substitution algorithm with the modified signed-digit number representation is used to perform fixed-point additions with limited carries. A new set of substitution rules and encodings is developed to combine the recognition and substitution steps into one correlation operation. This reduces hardware requirements, improves throughput by reducing the space–bandwidth product needed, and reduces latency (the delay between when data enter the processor and when the final output is available) by a factor of 2. This algorithm and our new modified signed-digit encodings and substitution rules improve the performance of other correlator and noncorrelator optical numeric computing architectures.

© 1994 Optical Society of America

History
Original Manuscript: May 27, 1993
Revised Manuscript: September 27, 1993
Published: March 10, 1994

Citation
David Casasent and Paul Woodford, "Symbolic substitution modified signed-digit optical adder," Appl. Opt. 33, 1498-1506 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-8-1498


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Swartzlander, “The quasi-serial multiplier,” IEEE Trans. Comput. C-22, 317–321 (1973). [CrossRef]
  2. H. Whitehouse, J. Speiser, “Linear signal processing architecture” in Aspects of Signal Processing—Part 2, G. Taconni, ed. (Reidel, Hingham, Mass., 1977), pp. 669–702.
  3. D. Psaltis, D. Casasent, D. Neft, M. Carlotto, “Accurate numerical computation by optical convolution,” in 1980 International Optical Computing Conference, W. T. Rhodes, ed., Proc. Soc. Photo-Opt. Instrum. Eng.232, 151–156 (1980).
  4. D. Psaltis, R. A. Athale, “High accuracy computation with linear analog optical systems: a critical study,” Appl. Opt. 25, 3071–3077 (1986). [CrossRef] [PubMed]
  5. A. P. Goutzoulis, “On the system efficiency of digital-accuracy acousto-optic processors,” in Optical Information Processing II, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.639, 56–62 (1986).
  6. M. M. Mirsalehi, T. K. Gaylord, “Logical minimization of multilevel coded functions,” Appl. Opt. 25, 3078–3088 (1986). [CrossRef] [PubMed]
  7. Y. Li, D. H. Kim, A. Kostrzewski, G. Eichmann, “Content-addressable-memory-based single-stage optical modified-signed-digit arithmetic,” Opt. Lett. 14, 1254–1256 (1989). [CrossRef] [PubMed]
  8. C. J. Perlee, D. P. Casasent, “Optical systems for digit-serial computation,” Appl. Opt. 28, 611–626 (1989). [CrossRef] [PubMed]
  9. V. P. Heuring, H. F. Jordan, J. P. Pratt, “Bit-serial architecture for optical computing,” Appl. Opt. 31, 3213–3224 (1992). [CrossRef] [PubMed]
  10. A. Huang, “Parallel algorithms for optical digital computers,” in Technical Digest, IEEE Tenth International Optical Computing Conference, S. Horvitz, ed. (IEEE Computer Society Press, Silver Spring, Md., 1983), pp. 13–17.
  11. A. K. Cherri, M. A. Karim, “Modified-signed digit arithmetic using an efficient symbolic substitution,” Appl. Opt. 27, 3824–3827 (1988). [CrossRef] [PubMed]
  12. Y. Li, G. Eichmann, “Conditional symbolic modified signed-digit arithmetic using optical content-addressable memory logic elements,” Appl. Opt. 26, 2328–2333 (1987). [CrossRef] [PubMed]
  13. J. Tanida, Y. Ichoka, “Optical logic array processing using shadowgrams,” J. Opt. Soc. Am. 73, 800–809 (1983). [CrossRef]
  14. M. A. Karim, A. A. S. Awwal, A. K. Cherri, “Polarization-encoded optical shadow-casting logic units: design,” Appl. Opt. 26, 2720–2725 (1987). [CrossRef] [PubMed]
  15. A. K. Cherri, M. A. Karim, “Symbolic substitution based flagged arithmetic unit design using polarization-encoded optical shadow-casting system,” Opt. Commun. 70, 455–461 (1989). [CrossRef]
  16. J. Tanida, J. Nakagawa, Y. Ichioka, “Birefringent encoding and multichannel reflective correlator for optical array logic,” Appl. Opt. 27, 3819–3823 (1988). [CrossRef] [PubMed]
  17. K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986). [CrossRef] [PubMed]
  18. K.-H. Brenner, “New implementation of symbolic substitution logic,” Appl. Opt. 25, 3061–3064 (1986). [CrossRef] [PubMed]
  19. P. A. Ramamoorthy, S. Antony, “Optical modified signed digit adder using polarization-coded symbolic substitution,” Opt. Eng. 26, 821–825 (1987).
  20. E. Botha, D. Casasent, E. Barnard, “Optical symbolic substitution using multichannel correlators,” Appl. Opt. 27, 817–818 (1988). [CrossRef] [PubMed]
  21. F. T. S. Yu, S. Jutamulia, “Implementation of symbolic substitution logic using optical associative memories,” Appl. Opt. 26, 2293–2294 (1987). [CrossRef] [PubMed]
  22. A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE Trans. Electron. Comput. EC-10, 389–400 (1961). [CrossRef]
  23. D. P. Casasent, E. C. Botha, “Multifunctional optical processor based on symbolic substitution,” Opt. Eng. 28, 425–433 (1989).
  24. K. Hwang, A. Louri, “Optical multiplication and division using modified-signed-digit symbolic substituion,” Opt. Eng. 28, 364–372 (1989).
  25. T. Parish, “Crystal clear storage,” Byte 15, 283–288 (1990).
  26. J. Gallant, “Futurebus+ standards spur commercial products,” Electron. Design News 37(18), 51–64 (1992).
  27. B. L. Drake, R. P. Bocker, M. E. Lasher, R. H. Patterson, W. J. Miceli, “Photonic computing using the modified signed-digit number representation,” Opt. Eng. 25, 38–43 (1986).
  28. N. Kato, R. Sekura, J. Yamanaka, T. Ebihara, S. Yamamoto, “Characteristics of a ferroelectric liquid crystal spatial light modulator with a dielectric mirror,” in Liquid-Crystal Devices and Materials, P. S. Drzaic, U. Efron, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1455, 190–205 (1991).
  29. G. Moddel, P. R. Barbier, “Response time of a-Si:H photosensors in optically addressed spatial light modulators,” in Amorphous Silicon Technology—1991 Symposium, A. Madan, Y. Hamakawa, M. J. Thompson, P. C. Taylor, P. G. LeComber, eds. (Materials Research Society, Pittsburgh, Pa., 1991), pp. 155–165.
  30. H. S. Hinton, A. L. Lentine, “Multiple quantum-well technology takes SEED,” IEEE Circuits Devices 9, 12–18 (1993). [CrossRef]
  31. S. Mukhopadhyay, A. Basuray, A. K. Datta, “New coding scheme for addition and subtraction using the modified signed-digit number representation in optical computation,” Appl. Opt. 27, 1375–1376 (1988). [CrossRef] [PubMed]
  32. S. Barua, “Carry-free optical binary adders,” in Optical Information-Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1347, 573–579 (1990).
  33. R. P. Bocker, B. L. Drake, M. E. Lasher, T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt. 25, 2456–2457 (1986). [CrossRef] [PubMed]
  34. B. Telfer, D. P. Casasent, “Ho–Kashyap optical associative processors,” Appl. Opt. 29, 1191–1202 (1990). [CrossRef] [PubMed]
  35. A. Louri, “Throughput enhancement for optical symbolic substitution systems,” Appl. Opt. 29, 2979–2980 (1990). [CrossRef] [PubMed]
  36. K. Trivedi, M. Ercegovac, “On-line algorithms for division and multiplication,” IEEE Trans. Comput. C-26, 681–687 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited