OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 33, Iss. 8 — Mar. 10, 1994
  • pp: 1517–1527

High-accuracy pipelined iterative-tree optical multiplication

Khaled Al-Ghoneim and David Casasent  »View Author Affiliations

Applied Optics, Vol. 33, Issue 8, pp. 1517-1527 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (1512 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-accuracy optical multiplier that uses an optical correlator is described. A symbolic substitution adder that uses the modified signed-digit number representation is used as the basic module. Emphasis is placed on the multiplication of many long words in parallel with minimum latency. The encoding method we employ in the adders permits the use of a new optical algorithm and architecture to generate partial products in symbolic form in parallel. Our multiplication algorithm and architecture are shown to be preferable to other optical techniques and to be competitive with digital technology; they are also shown to be particularly attractive for matrix–vector multiplication applications.

© 1994 Optical Society of America

Original Manuscript: June 1, 1993
Revised Manuscript: October 1, 1993
Published: March 10, 1994

Khaled Al-Ghoneim and David Casasent, "High-accuracy pipelined iterative-tree optical multiplication," Appl. Opt. 33, 1517-1527 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Avizienis, “Signed-digit number representation for fast parallel arithmetic,” IRE Trans. Electron. Comput. EC-10, 389–400 (1961). [CrossRef]
  2. A. Huang, Y. Tsunoda, J. W. Goodman, S. Ishihara, “Optical computing using residue arithmetic,” Appl. Opt. 18, 149–162 (1979). [CrossRef] [PubMed]
  3. A. Huang, “Parallel algorithms for optical digital computing,” in Proceedings of the IEEE Tenth International Optical Computing Conference, S. Horvitz, ed. (Institute for Electrical and Electronics Engineers, New York, 1983), pp. 13–17.
  4. D. Psaltis, R. A. Athale, “High accuracy computation with linear analog optical systems: a critical study,” Appl. Opt. 25, 3071–3077 (1986). [CrossRef] [PubMed]
  5. Y. Li, D. H. Kim, A. Kotrzewski, G. Eichmann, “Content-addressable-memory-based single-stage optical modified-signed-digit arithmetic,” Opt. Lett. 14, 1254–1256 (1989). [CrossRef] [PubMed]
  6. Z. Zucker, R. Alferness, “Photonic switches set to prosper,” Phys. World 4(9), 57–60 (1991).
  7. M. Murdocca, A Digital Design Methodology for Optical Computing (MIT, Cambridge, Mass., 1990).
  8. P. Guilfoyle, R. Stone, “Digital optical computer II,” in Optical Enhancements to Computing Technology, J. Neff, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1563, 214–222 (1991).
  9. V. Heuring, H. Jordan, J. Pratt, “Bit-serial architecture for optical computing,” Appl. Opt. 31, 3213–3224 (1992). [CrossRef] [PubMed]
  10. C. Perlee, D. Casasent, “Optical systems for digit serial computation,” Appl. Opt. 28, 611–626 (1989). [CrossRef] [PubMed]
  11. K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986). [CrossRef] [PubMed]
  12. K.-H. Brenner, “New implementation of symbolic substitution logic,” Appl. Opt. 25, 3061–3064 (1986). [CrossRef] [PubMed]
  13. J. Tanida, Y. Ichoka, “Optical logic array processing using shadowgrams,” J. Opt. Soc. Am. 73, 800–809 (1983). [CrossRef]
  14. J. Tanida, J. Nakagawa, Y. Ichioka, “Bifringent encoding and multichannel reflective correlator for optical array logic,” Appl. Opt. 27, 3819–3823 (1988). [CrossRef] [PubMed]
  15. M. Karim, A. Awwal, A. Cherri, “Polarization-encoded optical shadow-casting logic units: design,” Appl. Opt. 26, 2720–2725 (1987). [CrossRef] [PubMed]
  16. D. Casasent, E. Botha, “Multifunctional optical processor based on symbolic substitution,” Opt. Eng. 28, 425–433 (1989).
  17. D. Casasent, P. Woodford, “Correlation-based optical numeric processors,” in Optical Enhancements to Computing Technology, J. Neff, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1563, 112–119 (1991).
  18. D. Casasent, P. Woodford, “Symbolic substitution MSD optical adder,” Appl. Opt. 33, add page nos. (1994). [CrossRef]
  19. K. Hwang, A. Louri, “Optical multiplication and division using modified-signed-digit symbolic substitution,” Opt. Eng. 28, 364–372 (1989).
  20. D. Heller, “A survey of parallel algorithms in numerical algebra,” SIAM Rev. 20, 740–777 (1978). [CrossRef]
  21. S. Lakshmivarahan, S. K. Dhall, Analysis and Design of Parallel Algorithms (McGraw-Hill, New York, 1990), Chap. 1.
  22. N. Takagi, H. Yasuura, S. Yajima, “High-speed VLSI multiplication algorithm with a redundant binary addition tree,” IEEE Trans. Comput. C-34, 789–796 (1985). [CrossRef]
  23. N. Takagi, “Arithmetic unit based on a high-speed multiplier with a redundant binary addition tree,” in Advanced Signal Processing Algorithms, Architectures, and Implementations II, F. Luk, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1566, 244–251 (1991).
  24. M. Lasher, T. Henderson, B. Drake, R. Bocker, “Encoding schemes for a digital optical multiplier using the modified signed-digit number representation,” in Optical Information Processing II, D. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.639, 76–88 (1986).
  25. B. Drake, R. Bocker, M. Lasher, R. Patterson, W. Miceli, “Photonic computing using the modified signed-digit number representation,” Opt. Eng. 25, 38–43 (1986).
  26. K. Brenner, M. Kufner, S. Kufner, “Highly parallel arithmetic algorithms for a digital optical processor using symbolic substitution logic,” Appl. Opt. 29, 1610–1618 (1990). [CrossRef] [PubMed]
  27. N. Kato, R. Sekura, J. Yamanaka, T. Ebihara, S. Yamamoto, ‘Characteristics of a ferroelectric liquid crystal spatial light modulator with a dielectric mirror,” in Liquid-Crystal Devices and Materials, P. S. Drzaic, U. Efron, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1455, 190–205 (1991).
  28. G. Moddel, P. R. Barbier, “Response time of a-Si:H photosensors in optically addressed spatial light modulators,” in Proceedings of the Amorphous Silicon Technology-1991 Symposium, A. Madan, Y. Hamakawa, M. Thompson, P. C. Taylor, P. LeComber, eds. (Materials Research Society, Pittsburgh, Pa., 1991), pp. 155–165.
  29. A. Lentine, F. McCormick, R. Novotony, L. Chirovsky, L. D’Asaro, R. Kopf, J. Kuo, G. Boyd, “A 2 kilobit array of symmetric self-electro-optic effect devices,” IEEE Photon. Tech. Lett. 2, 51–53 (1990). [CrossRef]
  30. H. Hinton, A. Lentine, “Multiple quantum-well technology takes SEED,” IEEE Circuits Devices 9(2), 12–18 (1993). [CrossRef]
  31. L. Chirovsky, “Massive connectivity and SEED’s,” in Devices for Optical Processing, D. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 228–241 (1991).
  32. M. Santoro, M. Horowitz, “SPIM: a pipelined 64 × 64-bit iterative multiplier,” IEEE J. Solid-State Circuits 24, 487–493 (1989). [CrossRef]
  33. B. Benschneider, W. Bowhil, E. Cooper, M. Gavrielov, P. Gronowski, V. Maheshwari, V. Peng, J. Pickholtz, S. Samudrala, “A pipelined 50-MHz CMOS 64-bit floating-point arithmetic processor,” IEEE J. Solid-State Circuits 24, 1317–1323 (1989). [CrossRef]
  34. S. Yamamoto, R. Sekura, J. Yamanaka, T. Ebihara, N. Kato, H. Hosi, “Optical pattern recognition with LAPS-SLM,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1211, 273–283 (1990).
  35. M. Roe, K. Schnehrer, “High-speed and high-contrast operation of ferroelectric liquid crystal optically addressed spatial light modulators,” Opt. Eng. 32, 1662–1667 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited