OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 33, Iss. 9 — Mar. 20, 1994
  • pp: 1655–1658

Optoacoustic trace-gas monitoring with near-infrared diode lasers

Miklós Fehér, Yuan Jiang, John P. Maier, and András Miklós  »View Author Affiliations


Applied Optics, Vol. 33, Issue 9, pp. 1655-1658 (1994)
http://dx.doi.org/10.1364/AO.33.001655


View Full Text Article

Enhanced HTML    Acrobat PDF (538 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An inexpensive resonant optoacoustic monitoring system using near-infrared laser diodes was developed. It was demonstrated that wavelength modulation at the resonance frequency of the cell provides a superior signal-to-noise ratio compared with amplitude modulation and eliminates background drifts and fluctuations. The system was tested out on ammonia. Its sensitivity is 8 parts in 109 (S/N = 1) at atmospheric pressure, which corresponds to a minimum detectable absorption coefficient of approximately 3.5 × 10−11 cm−1 W−1. The pressure dependence of the optoacoustic resonance was also investigated. The monitor can be used as a continuous flow-through system up to a flow rate of approximately 3.5 L/min.

© 1994 Optical Society of America

History
Original Manuscript: December 8, 1992
Revised Manuscript: August 30, 1993
Published: March 20, 1994

Citation
Miklós Fehér, Yuan Jiang, John P. Maier, and András Miklós, "Optoacoustic trace-gas monitoring with near-infrared diode lasers," Appl. Opt. 33, 1655-1658 (1994)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-9-1655


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Grisar, H. Preier, G. Schmidtke, G. Restelli, D. Reidel, eds., Monitoring Gaseous Pollutants by Tunable Diode Lasers (Kluwer, Dordrecht, The Netherlands, 1987), part 1 of a series. [CrossRef]
  2. R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds., Monitoring Gaseous Pollutants by Tunable Diode Lasers (Kluwer, Dordrecht, The Netherlands, 1989), part 2 of a series. [CrossRef]
  3. R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds., Monitoring Gaseous Pollutants by Tunable Diode Lasers (Kluwer, Dordrecht, The Netherlands, 1992), part 3 of a series.
  4. M. Fehér, P. A. Martin, A. Rohrbacher, A. M. Soliva, J. P. Maier, “Inexpensive near-infrared diode-laser-based detection system for ammonia,” Appl. Opt. 32, 2028–2030 (1993). [CrossRef] [PubMed]
  5. V. P. Zharov, V. S. Letokhov, Laser Optoacoustic Spectroscopy, Vol. 37 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1986).
  6. P. Hess, J. Pelzl, eds., Photothermal and Photoacoustic Phenomena, Vol. 58 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1988).
  7. J. C. Murphy, F. W. Maclachlan Spicer, L. C. Armodt, B. S. H. Royce, eds., Photothermal and Photoacoustic Phenomena, Vol. 62 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1990).
  8. A. Mandelis, ed., Principles and Perspectives of Photothermal and Photoacoustic Phenomena (Elsevier, New York, 1992).
  9. M. W. Sigrist, S. Bernegger, P. L. Meyer, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990). [CrossRef]
  10. A. DiLieto, P. Minguzzi, M. Tonelli, “Design of an optoacoustic cell for laser-Stark spectroscopy,” Appl. Phys. B 27, 1–3 (1982). [CrossRef]
  11. H. Sauren, T. Regts, C. van Asselt, D. Bicanic, “Simplifying the laser photoacoustic trace detection of ammonia by effective suppression of water vapour and of carbon dioxide as the major absorbing atmospheric constituents,” Environ. Technol. 12, 719–724 (1991). [CrossRef]
  12. T. H. Vasteenkiste, F. R. Faxvog, D. M. Rössler, “Photoacoustic measurement of carbon dioxide using a semiconductor diode laser,” Appl. Spectrosc. 35, 194–196 (1981). [CrossRef]
  13. S. A. Johnson, “Trace gas detection using infrared lasers,” Anal. Proc. 23, 1–4 (1986). [CrossRef]
  14. K. Stephan, W. Hurdelbrink, “Line strength measurement using optoacoustic spectroscopy,” in Monitoring Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 263–273. [CrossRef]
  15. A. Mohebati, T. A. King, “Differential absorption fiberoptic gas sensor,” in Fiber Optic Sensors III, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1011, 183–189 (1988).
  16. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203 (1981). [CrossRef]
  17. A. Miklós, Z. Bozóki, Y. Jiang, M. Fehér, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength modulated diode lasers,” J. Appl. Phys. (to be published).
  18. J. Davidsson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990). [CrossRef]
  19. A. C. Stanton, D. S. Bomse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorptions,” in Monitoring Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), p. 31.
  20. B. R. Henry, M. G. Sowa, “Intracavity dye laser photoacoustic spectroscopy and its application to high energy vibrational overtone spectra,” Prog. Anal. At. Spectrosc. 12, 349–368 (1989).
  21. S. A. Trushin, “Photoacoustic air pollution monitoring with an isotopic CO2 laser,” Ber. Bunsenges. Phys. Chem. 96, 319–322 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited