OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 33, Iss. 9 — Mar. 20, 1994
  • pp: 1735–1748

Parametric study of the forces on microspheres held by optical tweezers

W. H. Wright, G. J. Sonek, and M. W. Berns  »View Author Affiliations

Applied Optics, Vol. 33, Issue 9, pp. 1735-1748 (1994)

View Full Text Article

Enhanced HTML    Acrobat PDF (1986 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical-trapping forces exerted on polystyrene microspheres are predicted and measured as a function of sphere size, laser spot size, and laser beam polarization. Axial and transverse forces are in good and excellent agreement, respectively, with a ray-optics model when the sphere diameter is ≥ 10 μm. Results are compared with results from an electromagnetic model when the sphere size is ≤ 1 μm. Axial trapping performance is found to be optimum when the numerical aperture of the objective lens is as large as possible, and when the trapped sphere is located just below the chamber cover slip. Forces in the transverse direction are not as sensitive to parametric variations as are the axial forces. These results are important as a first-order approximation to the forces that can be applied either directly to biological objects or by means of microsphere handles attached to the biological specimen.

© 1994 Optical Society of America

Original Manuscript: April 27, 1993
Revised Manuscript: September 27, 1993
Published: March 20, 1994

W. H. Wright, G. J. Sonek, and M. W. Berns, "Parametric study of the forces on microspheres held by optical tweezers," Appl. Opt. 33, 1735-1748 (1994)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987);A. Ashkin, J. M. Dziedzic, T. M. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987). [CrossRef] [PubMed]
  3. T. N. Buican, M. J. Smith, H. A. Crissman, G. C. Salzman, C. C. Stewart, J. C. Martin, “Automated single-cell manipulation and sorting by light trapping,” Appl. Opt. 26, 5311–5316 (1987). [CrossRef] [PubMed]
  4. R. Steubing, S. Cheng, W. H. Wright, Y. Numajiri, M. W. Berns, “Laser-induced cell fusion in combination with optical tweezers: the laser–cell fusion trap,” Cytometry 12, 505–510 (1991). [CrossRef] [PubMed]
  5. M. W. Berns, W. H. Wright, B. J. Tromberg, G. A. Profeta, J. J. Andrews, R. J. Walter, “Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle,” Proc. Natl. Acad. Sci. USA 86, 4539–4543 (1989);A. Ashkin, J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proc. Natl. Acad. Sci. USA 86, 7914–7918 (1989). [CrossRef] [PubMed]
  6. H. Liang, W. H. Wright, S. Cheng, W. He, M. W. Berns, “Micromanipulation of chromosomes in PTK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical forces (optical tweezers),” Exp. Cell Res. 204, 110–120 (1993). [CrossRef] [PubMed]
  7. A. Ashkin, K. Schultze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature (London) 348, 346–348 (1990). [CrossRef]
  8. S. C. Kuo, M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993). [CrossRef] [PubMed]
  9. S. Block, L. S. B. Goldstein, B. J. Schnapp, “Using optical tweezers to investigate kinesin-based motility in vitro,” J. Cell Biol. 109, 81a (1989).
  10. W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990). [CrossRef]
  11. T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, J. Greve, “Experimental and theoretical investigations on the validity of the geometric optics model for calculating the stability of optical traps,” Cytometry 12, 479–485 (1991). [CrossRef]
  12. K. Visscher, G. J. Brakenhoff, “Single-beam optical trapping integrated in a confocal microscope for biological applications,” Cytometry 12, 486–491 (1991). [CrossRef] [PubMed]
  13. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef] [PubMed]
  14. S. Sato, M. Ohyumi, H. Shibata, H. Inaba, Y. Ogawa, “Optical trapping of small particles using a 1.3-μm compact InGaAsP diode laser,” Opt. Lett. 16, 282–284 (1991). [CrossRef] [PubMed]
  15. W. H. Wright, G. J. Sonek, M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993). [CrossRef]
  16. S. Chu, “Laser manipulation of atoms and particles,” Science 253, 861–866 (1991). [CrossRef] [PubMed]
  17. G. Roosen, “La levitation optique de spheres,” Can. J. Phys. 57, 1260–1279 (1979). [CrossRef]
  18. G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189–194 (1977). [CrossRef]
  19. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), Sec. 4.5.
  20. J. S. Kim, S. S. Lee, “Scattering of laser beams and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am. 73, 303–312 (1983). [CrossRef]
  21. J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989). [CrossRef]
  22. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1987), Sec. 13.5.1.
  23. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988). [CrossRef]
  24. J. P. Barton, D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989). [CrossRef]
  25. R. S. Afzal, E. B. Treacy, “Optical tweezers using a diode laser,” Rev. Sci. Instrum. 63, 2157–2163 (1992). [CrossRef]
  26. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3836 (1991). [CrossRef]
  27. J. B. Bateman, E. J. Weneck, D. C. Eshler, “Determination of particle size and concentration from spectrophotometry transmission,” J. Colloid Sci. 14, 308–329 (1959). [CrossRef]
  28. A. H. Firester, M. E. Heller, P. Sheng, “Knife-edge scanning measurements of subwavelength focused light beams,” Appl. Opt. 16, 1971–1974 (1977). [CrossRef] [PubMed]
  29. Y. Suzaki, A. Tachibana, “Measurement of the μm-sized radius of Gaussian laser beam using the scanning knife edge,” Appl. Opt. 14, 2809–2810 (1975). [CrossRef] [PubMed]
  30. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media (Prentice-Hall, Englewood Cliffs, N.J., 1965), p. 327.
  31. E. M. Bonder, J. M. Colon, J. M. Dziedzic, A. Ashkin, “Force production by swimming sperm: analysis using optical tweezers,” J. Cell Biol. 111, 421a (1990).
  32. S. M. Block, “Optical tweezers: a new tool for biophysics,” in Noninvasive Techniques in Cell Biology, J. K. Foskett, S. Grinstein, eds. (Wiley-Liss, New York, 1990), pp. 375–402.
  33. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1986).
  34. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 478.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited