OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 1 — Jan. 1, 1995
  • pp: 186–189

Vibration transducer using an ultrashort Fabry–Perot cavity

Norikatsu Mio and Kimio Tsubono  »View Author Affiliations


Applied Optics, Vol. 34, Issue 1, pp. 186-189 (1995)
http://dx.doi.org/10.1364/AO.34.000186


View Full Text Article

Enhanced HTML    Acrobat PDF (116 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report here on the development of an optical transducer for mechanical vibration, making use of an ultrashort Fabry–Perot cavity. The noise level measured by a cavity 150 μm long is ~1.3 × 10−16 m/√Hz at ~1 kHz, which was obtained without a frequency-stabilization system. It was, however, large compared with the shot noise.

© 1995 Optical Society of America

History
Original Manuscript: June 28, 1994
Published: January 1, 1995

Citation
Norikatsu Mio and Kimio Tsubono, "Vibration transducer using an ultrashort Fabry–Perot cavity," Appl. Opt. 34, 186-189 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-1-186


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, S. P. Vyatchanin, “On the ultimate sensitivity in coordinate measurements,” Phys. Lett. A 179, 244–248 (1993). [CrossRef]
  2. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992). [CrossRef] [PubMed]
  3. K. Tsubono, M. Ohashi, H. Hirakawa, “Parametric transducer for gravitational radiation detector,” Jpn. J. Appl. Phys. 25, 622–626 (1986). [CrossRef]
  4. F. Bordoni, M. Karim, M. F. Bocko, T. Mengxi, “Proposed room-temperature detector for gravitational radiation from galactic sources,” Phys. Rev. D 42, 2952–2955 (1990). [CrossRef]
  5. O. D. Aguair, W. W. Johnson, W. O. Hamilton, “A cryogenic double-resonant parabridge motion transducer for resonant-mass gravitational wave detectors,” Rev. Sci. Instrum. 62, 2523–2534 (1991). [CrossRef]
  6. C. Cinquegrana, E. Majorana, P. Rapagnani, F. Ricci, “Back-action-evading transducer scheme for cryogenic gravitational wave antennas,” Phys. Rev. D 48, 448–465 (1993). [CrossRef]
  7. G. E. Moss, L. R. Miller, R. L. Forward, “Photon-noise-limited laser transducer for gravitational antenna,” Appl. Opt. 10, 2495–2498 (1971). [CrossRef] [PubMed]
  8. A. Abramovich, Z. Vager, M. Weksler, “Experimental test of a prototype gravitational radiation detector employing an active cavity laser sensor,” J. Phys. E 19, 182–188 (1986). [CrossRef]
  9. J.-P. Richard, “Laser instrumentation for one-phonon sensitivity and wide bandwidth with multimode gravitational radiation detectors,” J. Appl. Phys. 64, 2202–2205 (1988). [CrossRef]
  10. K. Tsubono, N. Mio, A. Mizutani, “Laser interferometer instrumented in a disk antenna for gravitational radiation,” Jpn. J. Appl. Phys. 30, 1326–1330 (1991). [CrossRef]
  11. J.-P. Richard, Y. Pang, J. J. Hamilton, “Optical motion sensor for resonant-bar gravitational wave antennas,” Appl. Opt. 31, 1641–1645 (1992). [CrossRef] [PubMed]
  12. J.-P. Richard, “Approaching the quantum limit with optically instrumented multimode gravitational-wave bar detector,” Phys. Rev. D 46, 2309–2317 (1992). [CrossRef]
  13. G. Rempe, R. J. Thompson, H. J. Kimble, R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992). [CrossRef] [PubMed]
  14. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  15. G. A. Kerr, N. A. Robertson, J. Hough, C. N. Man, “The fast frequency stabilisation of an argon laser to an optical resonator using an extra-cavity electro-optic modulator,” Appl. Phys. B 37, 11–16 (1985). [CrossRef]
  16. D. Shoemaker, A. Brillet, C. N. Man, O. Crégut, G. Kerr, “Frequency-stabilized laser-diode-pumped Nd:YAG laser,” Opt. Lett. 14, 609–611 (1989). [CrossRef] [PubMed]
  17. T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1117 (1992). [CrossRef]
  18. N. Uehara, K. Ueda, “193-mHz beat linewidth of frequency-stabilized laser-diode-pumped Nd:YAG ring lasers,” Opt. Lett. 18, 505–507 (1993). [CrossRef] [PubMed]
  19. N. M. Sampus, K. E. Gustafson, R. L. Byer, “Long-term stability of two diode-laser-pumped nonplanar ring lasers independently stabilized to two Fabry–Perot interferometers,” Opt. Lett. 18, 947–949 (1993). [CrossRef]
  20. N. Uehara, K. Ueda, “Ultrahigh-frequency stabilization of a diode-pumped Nd:YAG laser with a high-power-acceptance photodetector,” Opt. Lett. 19, 728–730 (1994). [CrossRef] [PubMed]
  21. T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985). [CrossRef] [PubMed]
  22. P. Fritschel, A. Jeffries, T. J. Kane, “Frequency fluctuation of a diode-pumped Nd:YAG ring laser,” Opt. Lett. 14, 993–995 (1989). [CrossRef] [PubMed]
  23. K. Nakayama, M. Tanaka, F. Shiota, K. Kuroda, “Precision physical measurements and nanometrology,” Metrologia 28, 483–502 (1991/92). [CrossRef]
  24. M. Stephens, “A sensitive interferometric accelerometer,” Rev. Sci. Instrum. 64, 2612–2614 (1993). [CrossRef]
  25. P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D 42, 2437–2445 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited