OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 34, Iss. 1 — Jan. 1, 1995
  • pp: 22–30

Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths

Michael S. Patterson, Stefan Andersson-Engels, Brian C. Wilson, and Ernest K. Osei  »View Author Affiliations

Applied Optics, Vol. 34, Issue 1, pp. 22-30 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (202 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A diffusion model of noninvasive absorption spectroscopy was used to determine how the change in signal resulting from a point absorber depends on the position of that absorber relative to the source and detector. This is equivalent to calculating the relative probability that a photon will visit a certain location in tissue before its detection. Experimental mapping of the point-target response in tissue-simulating materials confirmed the accuracy of the model. For steady-state spectroscopy a simple relation was derived between the mean depth visited by detected photons, the source–detector separation, and the optical penetration depth. It was also demonstrated theoretically that combining a pulsed source with time-gated detection provides additional control over the spatial distribution of the photon-visit probability.

© 1995 Optical Society of America

Original Manuscript: September 23, 1993
Revised Manuscript: July 15, 1994
Published: January 1, 1995

Michael S. Patterson, Stefan Andersson-Engels, Brian C. Wilson, and Ernest K. Osei, "Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths," Appl. Opt. 34, 22-30 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. F. Jobsis, J. H. Keizer, J. C. LaManna, M. Rosenthal, “Reflectance spectroscopy of cytochrome aa3 in vivo,” J. Appl. Physiol. 43, 858–872 (1977). [PubMed]
  2. M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987). [CrossRef] [PubMed]
  3. M. Cope, D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput. 26, 289–294 (1988). [CrossRef] [PubMed]
  4. B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988). [CrossRef] [PubMed]
  5. R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1. Theory,” Appl. Opt. 22, 2456–2462 (1983). [CrossRef] [PubMed]
  6. R. F. Bonner, R. Nossal, S. Havlin, G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987). [CrossRef] [PubMed]
  7. J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990). [CrossRef] [PubMed]
  8. J. M. Steinke, A. P. Shepherd, “Diffuse reflectance of whole blood: model for a diverging light beam,” IEEE Trans. Biomed. Eng. BME-34, 826–833 (1986). [CrossRef]
  9. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  10. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  11. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991). [CrossRef] [PubMed]
  12. G. H. Weiss, R. Nossal, R. F. Bonner, “Statistics of penetration depth of photons re-emitted from irradiated tissue,” J. Mod. Opt. 36, 349–359 (1989). [CrossRef]
  13. J. C. Shotland, J. C. Haselgrove, J. S. Leigh, “Photon hitting density,” Appl. Opt. 32, 448–453 (1993). [CrossRef]
  14. W. Cui, N. Wang, B. Chance, “Study of photon migration depths with time-resolved spectroscopy,” Opt. Lett. 16, 1632–1634 (1991). [CrossRef] [PubMed]
  15. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
  16. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
  17. H. C. van de Hulst, Multiple Light Scattering Tables, Formulas and Applications (Academic, New York, 1980).
  18. M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. I: Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990). [CrossRef]
  19. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–88 (1943). [CrossRef]
  20. J. X. Zhu, D. J. Pine, D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44, 3948–3959 (1991). [CrossRef] [PubMed]
  21. M. Keijzer, W. M. Star, P. R. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988). [CrossRef] [PubMed]
  22. L. Lilge, T. Haw, B. C. Wilson, “Miniature isotropic optical fibre probes for quantitative light dosimetry in tissues,” Phys. Med. Biol. 38, 215–230 (1993). [CrossRef] [PubMed]
  23. S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992). [CrossRef] [PubMed]
  24. B. C. Wilson, M. S. Patterson, D. M. Burns, “The effect of photosensitizer concentration on the penetration depth of photoactivating light,” Lasers Med. Sci. 1, 235–244 (1986). [CrossRef]
  25. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  26. J. D. Moulton, “Diffusion modelling of picosecond laser pulse propagation in turbid media,” M. Eng. thesis (McMaster University, Hamilton, Ontario, Canada, 1990).
  27. J. C. Hebden, R. A. Kruger, K. S. Wong, “Time resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991). [CrossRef] [PubMed]
  28. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993). [CrossRef] [PubMed]
  29. R. Berg, O. Jarlman, S. Svanberg, “Medical transillumination imaging using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993). [CrossRef] [PubMed]
  30. E. M. Sevick, J. R. Lakowicz, H. Smacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B: Biol. 16, 169–185 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited