OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 34, Iss. 10 — Apr. 1, 1995
  • pp: 1678–1683

Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates

C. L. Mitsas and D. I. Siapkas  »View Author Affiliations

Applied Optics, Vol. 34, Issue 10, pp. 1678-1683 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A generalized matrix method is presented for calculating the optical reflectance and transmittance of an arbitrary thin-solid-film multilayer structure on very thick substrates with rough surfaces and interfaces. We show that the effect of roughness and the influence of incoherently reflected light on the back side of a thick layer can be accounted for with a more general transfer matrix that enables the inclusion of modified complex Fresnel coefficients. Coherent, partially coherent, and incoherent multiply reflected light inside the multilayer structure is treated in the same way. We demonstrate the method by applying it to simulated and experimental reflectance spectra of thin epitaxial Si overlayers on very thick SiO2 substrates and on a separation by ion implantation of oxygen structure with a SiO2 buried layer exhibiting substantial roughness on both of its interfaces (Si/SiO2 and SiO2/Si).

© 1995 Optical Society of America

Original Manuscript: May 16, 1994
Revised Manuscript: September 23, 1994
Published: April 1, 1995

C. L. Mitsas and D. I. Siapkas, "Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates," Appl. Opt. 34, 1678-1683 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Bennett, M. J. Booty, “Computational method for determining n and k for a thin film from the measured reflectance, transmittance, and film thickness,” Appl. Opt. 5, 41–43 (1966). [CrossRef] [PubMed]
  2. P. O. Nilsson, “Determination of optical constants from intensity measurements at normal incidence,” Appl. Opt. 7, 436–442 (1968). [CrossRef]
  3. G. Lubberts, B. C. Burkey, F. Moser, E. A. Trabka, “Optical properties of phosphorus-doped polycrystalline silicon layers,” J. Appl. Phys. 52, 6870–6878 (1981). [CrossRef]
  4. E. Elizalde, F. Rueda, “On the determination of the optical constants n(λ) and α(λ) of thin supported films,” Thin Solid Films 122, 45–57 (1984). [CrossRef]
  5. C. L. Mitsas, E. K. Polychroniadis, D. I. Siapkas, “The influence of the growth parameters on the structural and electronic properties of TlBiSe2 thin films,” Mater. Sci. Eng. B 14, 347–352 (1992). [CrossRef]
  6. C. L. Mitsas, D. I. Siapkas, “Phonon and electronic properties of TlBiSe2 thin films,” Solid State Commun. 83, 857–861 (1992). [CrossRef]
  7. L. Ward, The Optical Constants of Bulk Materials and Films (Hilger, Bristol, UK, 1988), pp. 165–170.
  8. J. E. Nestell, R. W. Christy, “Derivation of optical constants of metals from thin film measurements at oblique incidence,” Appl. Opt. 11, 643–651 (1972). [CrossRef] [PubMed]
  9. J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Determination of optical constants of thin film coating materials based on inverse synthesis,” Appl. Opt. 22, 3191–3200 (1983). [CrossRef] [PubMed]
  10. H. W. Verleur, “Determination of optical constants from reflectance or transmittance measurements on bulk crystals or thin films,” J. Opt. Soc. Am. 58, 1356–1364 (1968). [CrossRef]
  11. J. C. Manifacier, J. Gasiot, J. P. Filliard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976). [CrossRef]
  12. D. B. Kushev, N. N. Zheleva, Y. Demakopoulou, D. Siapkas, “A new method for the determination of the thickness, the optical constants, and the relaxation time of weakly absorbing semiconducting thin films,” Infrared Phys. 26, 385–393 (1986). [CrossRef]
  13. A. Vasicek, Optics of Thin Films (North-HollandAmsterdam, 1960), pp. 254–261.
  14. M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964), pp. 54–69.
  15. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965), pp. 69–80.
  16. Z. Knittl, Optics of Thin Films (Wiley, London, 1976), pp. 41–46.
  17. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), pp. 102–114.
  18. E. D. Palik, ed., Handbook of Optical Constants of Solids I (Academic, New York, 1985), pp. 18–21.
  19. C. L. Mitsas, “The growth and characterization of III–V–VI2 ternary compound thin films,” Ph.D. dissertation (University of Thessaloníki, Thessaloníki, Greece, 1995).
  20. S. Schirar, L. Bayo, A. Melouah, J. Bougnot, C. Linares, A. Montaner, M. Galtier, “Nondestructive determination of free carrier density of epitaxial layers of GaSb by IR reflectivity measurement,” Thin Solid Films 155, 125–132 (1987). [CrossRef]
  21. J. Kavaliauskas, G. Krivaite, D. Senuliene, A. Sileika, “Characterization of the interface in CdxHg1–xTe/CdTe epilayers by IR reflectivity and electroreflectance,” Phys. Status Solidi A 126, K201–204 (1991). [CrossRef]
  22. P. M. Amirtharaj, S. Perkowitz, “Far infrared spatial probe of heteroepitaxial indium arsenide,” Thin Solid Films 62, 357–360 (1979). [CrossRef]
  23. Y. B. Li, R. A. Stradling, T. Knight, J. R. Birch, R. H. Thomas, C. C. Phillips, I. T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy,” Semicond. Sci. Technol. 9, 101–111 (1993). [CrossRef]
  24. S. Kotini, D. I. Siapkas, C. A. Dimitriadis, “Electronic and phonon properties of semiconductive FeSi2 films,” in Proceedings of the 20th International Conference on the Physics of Semiconductors, E. M. Anastassakis, J. D. Joannopoulos, eds. (World Scientific Publishing, Thessaloníki, Greece, 1990), Vol. 1, pp. 316–319.
  25. N. Hatzopoulos, D. I. Siapkas, P. L. F. Hemment, “Oxide growth, refractive index and composition profiles of structures formed by 2-MeV oxygen implantation into Si,” J. Appl. Phys., in press.
  26. J. M. Pawlikowski, “Comments on the determination of the absorption coefficient of thin semiconductor films,” Thin Solid Films 127, 29–38 (1985). [CrossRef]
  27. I. Filinski, “The effects of sample imperfections on optical spectra,” Phys. Status Solidi B 49, 577–588 (1972). [CrossRef]
  28. J. Szczyrbowski, A. Czapla, “Optical absorption in d.c. sputtered InAs films,” Thin Solid Films 47, 127–137 (1977). [CrossRef]
  29. A. M. Goodman, “Optical interference method for the approximate determination of refractive index and thickness of a transparent layer,” Appl. Opt. 17, 2779–2787 (1978). [CrossRef] [PubMed]
  30. D. Siapkas, D. B. Kushev, N. N. Zheleva, J. Siapkas, I. Lelidis, “Optical constants of tin-telluride determined from infrared interference spectra,” Infrared Phys. 31, 425–433 (1991). [CrossRef]
  31. P. H. Berning, in Physics of Thin Films, Vol. 1, G. Hass, ed. (Academic, New York, 1963), pp. 69–71.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited