OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 34, Iss. 12 — Apr. 20, 1995
  • pp: 2089–2101

Simulation of wave propagation in three-dimensional random media

Wm. A. Coles, J. P. Filice, R. G. Frehlich, and M. Yadlowsky  »View Author Affiliations

Applied Optics, Vol. 34, Issue 12, pp. 2089-2101 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (281 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantitative error analyses for the simulation of wave propagation in three-dimensional random media, when narrow angular scattering is assumed, are presented for plane-wave and spherical-wave geometry. This includes the errors that result from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive indices of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared with the spatial spectra of intensity. The numerical requirements for a simulation of given accuracy are determined for realizations of the field. The numerical requirements for accurate estimation of higher moments of the field are less stringent.

© 1995 Optical Society of America

Original Manuscript: December 22, 1993
Revised Manuscript: October 17, 1994
Published: April 20, 1995

Wm. A. Coles, J. P. Filice, R. G. Frehlich, and M. Yadlowsky, "Simulation of wave propagation in three-dimensional random media," Appl. Opt. 34, 2089-2101 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Flatté, G. Wang, J. Martin, “Irradiance variance of optical waves through atmospheric turbulence by numerical simulation and comparison with experiment,” J. Opt. Soc. Am. A 10, 2363–2370 (1993). [CrossRef]
  2. S. M. Flatté, C. Brasher, G. Wang, “Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation,” J. Opt. Soc. Am. A 11, 2080–2092 (1994). [CrossRef]
  3. R. G. Frehlich, “Effects of global intermittency on wave propagation in random media,” Appl. Opt. 33, 5764–5769 (1994). [CrossRef] [PubMed]
  4. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  5. R. G. Frehlich, “Effects of refractive turbulence on coherent laser radar,” Appl. Opt. 32, 2122–2139 (1993). [CrossRef] [PubMed]
  6. W. A. Coles, J. P. Filice, “Dynamic spectra of interplanetary scintillations,” Nature (London) 312, 251–254 (1985). [CrossRef]
  7. R. Buckley, “Diffraction by a random phase-changing screen: a numerical experiment,” J. Atmos. Terr. Phys. 37, 1431–1446 (1975). [CrossRef]
  8. C. L. Rino, “On the application of phase screen models to the interpretation of ionospheric scintillation data,” Radio Sci. 17, 855–867 (1982). [CrossRef]
  9. D. L. Knepp, “Multiple phase-screen calculation of the temporal behavior of stochastic waves,” Proc. IEEE 71, 722–737 (1983). [CrossRef]
  10. C. H. Liu, S. J. Franke, “Experimental and theoretical studies of ionospheric irregularities using scintillation techniques,” Radio Sci. 21, 363–374 (1986). [CrossRef]
  11. C. L. Rino, J. Owen, “Numerical simulations of intensity scintillation using the power law phase screen model,” Radio Sci. 19, 891–908 (1984). [CrossRef]
  12. C. Macaskill, T. E. Ewart, “Computer simulation of two-dimensional random wave propagation,” Inst. Math. Appl. J. Appl. Math. 33, 1–15 (1984). [CrossRef]
  13. J. P. Filice, “Studies of the microscale density fluctuations in the solar wind using interplanetary scintillations,” Ph.D. dissertation (University of California, San Diego, Calif., 1984).
  14. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976). [CrossRef]
  15. J. M. Martin, S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111–2126 (1988). [CrossRef] [PubMed]
  16. J. M. Martin, S. M. Flatté, “Simulation of point-source scintillation through three-dimensional random media,” J. Opt. Soc. Am. A 7, 838–847 (1990). [CrossRef]
  17. J. Martin, “Simulation of wave propagation in random: theory and applications,” in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, V. U. Zavorotny, eds. (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).
  18. M. Spivack, B. J. Uscinski, “The split-step solution in random wave propagation,” J. Comput. Appl. Math. 27, 349–361 (1989). [CrossRef]
  19. A. M. Prokhorov, F. V. Bunkin, K. S. Gochelashvily, V. I. Shishov, “Laser irradiance propagation in turbulent media,” Proc. IEEE 63, 790–811 (1975). [CrossRef]
  20. R. G. Frehlich, “Laser scintillation measurements of the temperature spectrum in the atmospheric surface layer,” J. Atmos. Sci. 49, 1494–1509 (1992). [CrossRef]
  21. V. I. Klyatskin, V. I. Tatarskii, “A new method of successive approximations in the problem of the propagation of waves in a medium having random large-scale inhomogeneities,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 14, 1400–1415 (1971) [Radio-phys. Quantum Electron. 14, 1100–1111 (1971)].
  22. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, Springfield, Va., 1971).
  23. V. U. Zavorotnyi, “Strong fluctuations of electromagnetic waves in a random medium with finite longitudinal correlation of the inhomogeneities,” Zh. Eksp. Teor. Fiz. 75, 56–65 (1978) [Sov. Phys. JETP 48, 27–31 (1978)].
  24. R. L. Fante, “Inner-scale size effect on the scintillations of light in the turbulent atmosphere,” J. Opt. Soc. Am. 73, 277–281 (1983). [CrossRef]
  25. R. G. Frehlich, “Intensity covariance of a point source in a random medium with a Kolmogorov spectrum and an inner scale of turbulence,” J. Opt. Soc. Am. A 4, 360–366 (1987). [CrossRef]
  26. R. Dashen, “Path integrals for waves in random media,” J. Math. Phys. 20, 894–920 (1979). [CrossRef]
  27. W. A. Coles, R. G. Frehlich, B. J. Rickett, J. L. Codona, “Refractive scintillation in the interstellar medium,” Astrophys. J. 315, 666–674 (1987). [CrossRef]
  28. R. Narayan, W. B. Hubbard, “Theory of anisotropic refractive scintillation: application to stellar occultations by Neptune,” Astrophys. J. 325, 503–518 (1988). [CrossRef]
  29. S. M. Flatté, R. Dashen, W. H. Munk, K. M. Watson, F. Zachariasen, Sound Transmission Through a Fluctuating Ocean, Cambridge Monographs on Mechanics and Applied Mathematics (Cambridge U. Press, Cambridge, 1979).
  30. R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992). [CrossRef]
  31. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990). [CrossRef]
  32. J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948 (1986). [CrossRef]
  33. M. Spivack, “Accuracy of the moments from simulation of waves in random media,” J. Opt. Soc. Am. A 7, 790–793 (1990). [CrossRef]
  34. N. Ben-Yosef, E. Goldner, “Sample size influence on optical scintillation analysis. 1: Analytical treatment of the higher-order irradiance moments,” Appl. Opt. 27, 2167–2177 (1988). [CrossRef] [PubMed]
  35. R. G. Frehlich, J. H. Churnside, “Statistical properties of estimates of the moments of laser scintillation,” J. Mod. Opt. 36, 1645–1659 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited