OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 14 — May. 10, 1995
  • pp: 2476–2482

Submicrometer gratings for solar energy applications

Claus Heine and Rudolf H. Morf  »View Author Affiliations


Applied Optics, Vol. 34, Issue 14, pp. 2476-2482 (1995)
http://dx.doi.org/10.1364/AO.34.002476


View Full Text Article

Enhanced HTML    Acrobat PDF (498 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffractive optical structures for increasing the efficiency of crystalline silicon solar cells are discussed. As a consequence of the indirect band gap, light absorption becomes very ineffective near the band edge. This can be remedied by use of optimized diffraction gratings that lead to light trapping. We present blazed gratings that increase the optically effective cell thickness by approximately a factor of 5. In addition we present a wideband antireflection structure for glass that consists of a diffraction grating with a dielectric overcoat, which leads to an average reflection of less than 0.6% in the wavelength range between 300 and 2100 nm.

© 1995 Optical Society of America

History
Original Manuscript: August 1, 1994
Revised Manuscript: September 30, 1994
Published: May 10, 1995

Citation
Claus Heine and Rudolf H. Morf, "Submicrometer gratings for solar energy applications," Appl. Opt. 34, 2476-2482 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-14-2476


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Strese, J. Schindler, “Kostendegression Photovoltaik: Fertigung multikristalliner Solarzellen und ihr Einsatz im Kraftwerksbereich,” Rep. 0328830A (Bundesminister für For-schung und Technik, Bonn, Germany, 1988). A short review can be found in Bild Wiss. (July 1988), p. 36.
  2. H. J. Hovel, Solar Cells, Vol. II of the Semiconductor and Semimetals Series (Academic, New York, 1975), p. 97.
  3. P. Campbell, M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987). [CrossRef]
  4. D. Redfield, “Multiple-pass thin film silicon solar cell,” Appl. Phys. Lett. 25, 647–648 (1974). [CrossRef]
  5. A. Goetzberger, “Optical confinement in thin Si solar cells by diffuse back reflectors,” in Proceedings of the Fifteenth IEEE Photovoltaic Specialists’ Conference (Institute of Electrical and Electronic Engineers, New York, 1981), p. 867.
  6. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982). [CrossRef]
  7. H. P. Herzig, M. T. Gale, H. W. Lehmann, R. Morf, “Diffractive components: computer generated elements,” in Perspectives for Parallel Optical Interconnects, P. H. Lalanne, P. Chavel, eds. (Springer, New York, 1993) Chap. 5, pp. 71–107. [CrossRef]
  8. R. H. Morf, “Exponentially convergent and numerically efficient solution of Maxwell’s equations for lamellar diffraction gratings,” J. Opt. Soc. Am. A (to be published).
  9. R. C. Enger, S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983). [CrossRef] [PubMed]
  10. D. Raguin, G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993). [CrossRef] [PubMed]
  11. D. Raguin, G. M. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Appl. Opt. 32, 2582–2598 (1993). [CrossRef] [PubMed]
  12. T. K. Gaylord, W. E. Baird, M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25, 4562–4567 (1986). [CrossRef] [PubMed]
  13. E. N. Glytsis, T. K. Gaylord, “High-spatial frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 32, 4459–4470 (1992). [CrossRef]
  14. M. E. Motamedi, W. H. Southwell, W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31, 4371–4376 (1992). [CrossRef] [PubMed]
  15. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33, 2695–2706 (1994). [CrossRef] [PubMed]
  16. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andreawartha, “The dielectric lamellar grating,” Opt. Acta 28, 413–428 (1981); “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981). [CrossRef]
  17. R. H. Morf, H. Kiess, “Submicron gratings for light trapping in silicon solar cells: a theoretical study,” in Proceedings of the Ninth International Conference on Photovoltaic Solar Energy, W. Palz, ed. (Commission of the European Communities, Brussels, Belgium, 1989), pp. 313–315.
  18. R. Morf, R. E. Kunz, “Dielectric filter optimization by simulated thermal annealing,” in Thin Film Technologies III, K. H. Guenther, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1019, 211–217 (1988).
  19. R. E. Kunz, J. Edlinger, B. J. Curtis, M. T. Gale, L. U. Kempen, H. Rudigier, H. Schütz, “Grating couplers in tapered waveguides for integrated optical sensing,” in Chemical, Biochemical, and Environmental Fiber Sensors V, R. A. Lieberman, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2068, 313–325 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited