OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 17 — Jun. 10, 1995
  • pp: 3097–3102

Visual-area coding technique (VACT): optical parallel implementation of fuzzy logic and its visualization with the digital-halftoning process

Tsuyoshi Konishi, Jun Tanida, and Yoshiki Ichioka  »View Author Affiliations


Applied Optics, Vol. 34, Issue 17, pp. 3097-3102 (1995)
http://dx.doi.org/10.1364/AO.34.003097


View Full Text Article

Enhanced HTML    Acrobat PDF (1223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel technique, the visual-area coding technique (VACT), for the optical implementation of fuzzy logic with the capability of visualization of the results is presented. This technique is based on the microfont method and is considered to be an instance of digitized analog optical computing. Huge amounts of data can be processed in fuzzy logic with the VACT. In addition, real-time visualization of the processed result can be accomplished.

© 1995 Optical Society of America

History
Original Manuscript: August 25, 1994
Revised Manuscript: November 22, 1994
Published: June 10, 1995

Citation
Tsuyoshi Konishi, Jun Tanida, and Yoshiki Ichioka, "Visual-area coding technique (VACT): optical parallel implementation of fuzzy logic and its visualization with the digital-halftoning process," Appl. Opt. 34, 3097-3102 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-17-3097


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Tanida, Y. Ichioka, “Optical logic array processor using shadowgrams,” J. Opt. Soc. Am. 73, 800–809 (1983). [CrossRef]
  2. K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986). [CrossRef] [PubMed]
  3. K.-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Image algebra representation of parallel optical binary,” Appl. Opt. 28, 1263–1278 (1989). [CrossRef] [PubMed]
  4. M. Fukui, K. Kitayama, “Applications of image-logic algebra: wire routing and numerical data processings,” Appl. Opt. 31, 581–591 (1992). [CrossRef] [PubMed]
  5. R. G. A. Craig, B. S. Wherrett, A. C. Walker, F. A. P. Tooley, S. D. Smith, “Optical cellular logic image processor: implementation and programming of a single channel digital optical circuit,” Appl. Opt. 30, 2297–2308 (1991). [CrossRef] [PubMed]
  6. K.-H. Brenner, A. Huang, “Optical implementation of the perfect shuffle interconnection,” Appl. Opt. 27, 135–137 (1988). [CrossRef] [PubMed]
  7. J. Jahns, “Optical implementation of the Banyan network,” Opt. Commun. 76, 321–324 (1990). [CrossRef]
  8. K.-S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, I. Glaser, “Digital optical cellular image processor (DOCIP): experimental implementation,” Appl. Opt. 32, 166–173 (1993). [CrossRef] [PubMed]
  9. M. Takahashi, M. Oita, S. Tai, K. Kojima, K. Kyuma, “A quantized backpropagation learning rule and its application to optical neural networks,” Opt. Comput. Process. 1, 175–182 (1991).
  10. P. Thiran, V. Peiris, P. Heim, B. Hochet, “Quantization effects in digitally behaving circuit implementations of Kohonen networks,” IEEE Trans. Neural Networks 5, 450–458 (1994). [CrossRef]
  11. L. Liu, “Optical implementation of parallel fuzzy logic,” Opt. Commun. 73, 183–187 (1989). [CrossRef]
  12. H.-J. Zimmermann, Fuzzy Set Theory and Its Applications (Kluwer-Nijhoff, Boston, Mass., 1985), pp. 121–177.
  13. R. Ulichney, Digital Halftoning (MIT, Cambridge, Mass., 1987), pp. 1–14.
  14. J. P. Allebach, “Aliasing and quantization in the efficient display of images,” J. Opt. Soc. Am. 69, 869–877 (1979). [CrossRef]
  15. F. Ono, “Binary rendition of continuous-tone pictures using binary patterns having similar Fourier spectra,” Trans. Inst. Electron. Commun. Eng. Jpn. Part D J68D, 686–693 (1985).
  16. J. Jahns, M. J. Murdocca, “Cross-over networks and their optical implementation,” Appl. Opt. 27, 3155–3160 (1988). [CrossRef] [PubMed]
  17. S. Zhang, S. Lin, C. Chen, “Optical implementation of a fuzzy associative memory,” Opt. Commun. 100, 48–52 (1993). [CrossRef]
  18. Z. Zhu, L. Liu, “Optical cellular continuous logic array for gray-scale image processing,” Appl. Opt. 32, 3676–3683 (1993). [CrossRef] [PubMed]
  19. H. Akirakawa, K. Hirota, “Fuzzy inference engine by address-look-up and paging method,” in Proceedings of the International Workshop on Fuzzy System Applications (International Fuzzy Systems Association, Amsterdam, North-Holland, 1988), pp. 45–56.
  20. Y.-M. Pok, J.-X. Xu, C. C. Hang, “Visualization of fuzzy control dynamics using vector space,” Asia-Pac. Eng. J. A 3, 105–127 (1993).
  21. T. Konishi, J. Tanida, Y. Ichioka, “Pure optical parallel array logic system: an optical parallel computing architecture,” Inst. Electron. Info. Commun. Eng. Trans. Electron. E77-C, 30–34 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited