OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 34, Iss. 17 — Jun. 10, 1995
  • pp: 3103–3115

Digital free-space optical interconnections: a comparison of transmitter technologies

Chi Fan, Barmak Mansoorian, Daniel A. Van Blerkom, Mark W. Hansen, Volkan H. Ozguz, Sadik C. Esener, and Gary C. Marsden  »View Author Affiliations

Applied Optics, Vol. 34, Issue 17, pp. 3103-3115 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the performance of free-space optical interconnection systems at the technology level. Specifically, three optical transmitter technologies, lead-lanthanum-zirconate-titanate and multiple-quantum-well modulators and vertical-cavity surface-emitting lasers, are evaluated. System performance is measured in terms of the achievable areal data throughput and the energy required per transmitted bit. It is shown that lead-lanthanum-zirconate-titanate modulator and vertical-cavity surface-emitting laser technologies are well suited for applications in which a large fan-out per transmitter is required but the total number of transmitters is relatively small. Multiple-quantum-well modulators, however, are good candidates for applications in which many transmitters with a limited fan-out are needed.

© 1995 Optical Society of America

Original Manuscript: July 5, 1994
Revised Manuscript: January 3, 1995
Published: June 10, 1995

Chi Fan, Barmak Mansoorian, Daniel A. Van Blerkom, Mark W. Hansen, Volkan H. Ozguz, Sadik C. Esener, and Gary C. Marsden, "Digital free-space optical interconnections: a comparison of transmitter technologies," Appl. Opt. 34, 3103-3115 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Feldman, S. Esener, C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988). [CrossRef] [PubMed]
  2. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical imaging applied to microelectronic chip-to-chip interconnections,” Appl. Opt. 24, 2851–2858 (1985). [CrossRef] [PubMed]
  3. M. Feldman, C. Guest, T. Drabik, S. Esener, “Comparison between electrical and free-space optical interconnects for fine-grain processor arrays based on interconnect density capabilities,” Appl. Opt. 28, 3820–3829 (1989). [CrossRef] [PubMed]
  4. F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991). [CrossRef]
  5. A. V. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, “Grain-size consideration for optoelectronic multistage interconnection network,” Appl. Opt. 31, 5480–5507 (1992). [CrossRef] [PubMed]
  6. K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994). [CrossRef] [PubMed]
  7. G. Haertling, C. Land, “Hot pressed PLZT ferroelectric ceramics for electro-optics applications,” J. Am. Ceram. Soc. 56, 1–11 (1971). [CrossRef]
  8. M. Title, S. H. Lee, “Modeling and characterization of embedded electrode performance on transverse electro-optic modulators,” Appl. Opt. 23, 85–98 (1990). [CrossRef]
  9. B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.
  10. D. A. B. Miller, D. S. Chemla, S. Schmitt-Rink, “Electrical field dependence of semiconductor quantum wells,” in Optical Nonlinearities and Instabilities in Semiconductors, H. Hays, ed. (Academic, New York, 1988), pp. 325–360.
  11. P. J. Stevens, G. Parry, “Limits to normal incidence electroabsorption modulation in GaAs/(GaAl) as multiple quantum well diodes,” J. Lightwave Technol. 7, 1101–1108 (1989). [CrossRef]
  12. T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990). [CrossRef]
  13. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984). [CrossRef]
  14. T. Sizer, T. K. Woodward, U. Keller, K. Sauer, T.-H. Chiu, D. L. Sivco, A. Y. Cho, “Measurement of carrier escape rates, exciton saturation intensity, and saturation density in electrically biased multiple-quantum-well modulators,” IEEE J. Quantum Electron. 30, 399–407 (1994). [CrossRef]
  15. C. Fan, C W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 mm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993). [CrossRef]
  16. K. W. Goossen, J. E. Cunningham, M. B. Santos, W. Y. Jan, “Measurement of modulation saturation intensity in strain-balanced, undefected InGaAs/GaAsP modulators operating at 1.064 μm,” Appl. Phys. Lett. 63, 515–517 (1993). [CrossRef]
  17. K. W. Jelley, R. W. H. Engellmann, K. Alavi, H. Lee, “Well size related limitations on maximum electroabsorption in GaAs/AlGaAs multiple quantum well structures,” Phys. Lett. 55, 70–72 (1989).
  18. M. Whitehead, A. Rivers, G. Parry, J. S. Roberts, C. Button, “Low-voltage multiple quantum well reflection modulator with ON:OFF ratio >100:1,” Electron. Lett. 25, 984–985 (1989). [CrossRef]
  19. R. H. Yan, R. J. Simes, L. A. Coldren, A. C. Gossard, “Transverse modulators with a record reflection change of >20%/V using asymmetric Fabry–Perot structures,” Appl. Phys. Lett. 56, 1626–1628 (1990). [CrossRef]
  20. B. Pezeshku, D. Thomas, J. S. Harris, “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Phys. Lett. 57, 1491–1492 (1990).
  21. L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1362, 79–92 (1991).
  22. J. Jewell, G. Olbright, “Vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1332–1346 (1991). [CrossRef]
  23. R. Geels, L. Coldren, “Submilliamp threshold vertical cavity laser diodes,” App. Phys. Lett. 57, 1605–1607 (1990). [CrossRef]
  24. F. B. McCormick, “Free-space interconnection techniques,” in Photonics in Switching, J. E. Midwinter, ed. (Academic, New York, 1993), Vol. II, pp. 169–250.
  25. H. C. Casey, M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Part B, pp. 224–226.
  26. R. Geiger, P. Allen, N. Stroder, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, New York, 1990), pp. 590–593.
  27. H. B. Bakaglu, Circuits, Interconnections, and Packaging for VLSI (Addison-Wesley, Reading, Mass., 1990).
  28. C.-S. Li, H. S. Stone, Y. Kwark, C. M. Olsen, “Fully differential optical interconnections for high-speed digital systems,” IEEE Trans. Very-Large-Scale-Integrat. Syst. 1, 151–163 (1993). [CrossRef]
  29. S. R. Forrest, “Sensitivity of avalanche photodetector receivers for high-bit-rate long-wavelength optical communication systems,” in Semiconductors and Semimetals, W. T. Tsang, ed. (Academic, New York, 1985), Vol. 22, pp. 329–387. [CrossRef]
  30. A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited