OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 17 — Jun. 10, 1995
  • pp: 3136–3144

Optically addressed ferroelectric memory with nondestructive readout

Sarita Thakoor and Anil P. Thakoor  »View Author Affiliations


Applied Optics, Vol. 34, Issue 17, pp. 3136-3144 (1995)
http://dx.doi.org/10.1364/AO.34.003136


View Full Text Article

Enhanced HTML    Acrobat PDF (168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a review of the emerging optically addressed ferroelectric memory with nondestructive readout as a nonvolatile memory technology, identify its high-impact applications, and project on some novel device designs and architectures that will enable its realization. Based on the high-speed bidirectional polarization-dependent photoresponse, simulation of a readout circuit for a 16-kbit VLSI ferromemory chip yields read-access times of ~20 ns and read-cycle times of ~30 ns (~34 ns and ~44 ns, respectively, within a framework of a radiation-hard environment), easily surpassing those of the conventional electrical destructive readout. Extension of the simulation for a 64-kbit memory shows that the read-access and -cycle times are only marginally increased to ~21 ns and ~31 ns, respectively (~38 ns and ~48 ns, with a radiation-hard readout circuitry). Commercial realization of the optical nondestructive readout, however, would require a reduction in the incident (optical) power by roughly an order of magnitude for the readout or an enhancement in the delivered power-to-size ratio of semiconductor lasers for compact implementation. We present a new two-capacitor memory-cell configuration that provides an enhanced bipolar optoelectronic response from the edges of the capacitor at incident power as low as ~2 mW/μm2. A novel device design based on lead zirconate titanate with the c axis parallel to the substrate is suggested to reduce the requirement of incident optical power further by orders of magnitude.

© 1995 Optical Society of America

History
Original Manuscript: February 28, 1994
Revised Manuscript: October 25, 1994
Published: June 10, 1995

Citation
Sarita Thakoor and Anil P. Thakoor, "Optically addressed ferroelectric memory with nondestructive readout," Appl. Opt. 34, 3136-3144 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-17-3136


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. E. Land, “Longitudinal electro-optic effects and photosensitivities of lead zirconate titanate thin films,” J. Am. Ceram. Soc. 72, 2059–2064 (1989). [CrossRef]
  2. S. J. Martin, M. A. Butler, C. E. Land, “Ferroelectric optical image comparator using PLZT thin films,” Electron. Lett. 24, 1486–1487 (1988). [CrossRef]
  3. M. A. Butler, S. J. Martin, C. E. Land, “Photoinduced currents in PZT thin films,” Appl. Opt. 28, 5105–5109 (1989). [CrossRef] [PubMed]
  4. G. H. Haertling, “Electro-optic ceramics and devices,” in Electronic Ceramics, L. M. Levinson, ed. (Dekker, New York, 1987), pp. 371–492.
  5. S. Thakoor, “Nondestructive readout (NDRO) from ferroelectric PZT thin film capacitors,” in Ceramic Transactions: Ferroelectric Films, A. S. Bhalla, K. M. Nair, eds. (American Ceramic Society, Westerville, Ohio, 1991), Vol. 25, pp. 251–264.
  6. S. Thakoor, A. P. Thakoor, S. E. Bernacki, “Photoresponse from thin ferroelectric films of lead zirconate titanate,” presented at the Third International Symposium on Integrated Ferroelectrics, Colorado Springs, Colo., 3–5 April 1991.
  7. S. Thakoor, “High-speed nondestructive readout from thin film ferroelectric memory,” Appl. Phys. Lett. 60, 3319–3321 (1992). [CrossRef]
  8. S. Thakoor, J. Maserjian, J. Perry, “An optical probe for ferroelectric thin film memory capacitors,” Integrated Ferroelectrics 4, 333–340 (1994). [CrossRef]
  9. S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Integration of ferroelectric thin films into nonvolatile memories,” J. Vac. Sci. Technol. A 10, 1554–1561 (1992). [CrossRef]
  10. S. Y. Wu, “A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor,” IEEE Trans. Electron Devices ED-21, 499–504 (1974).
  11. K. Sugibuchi, Y. Kurogi, N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys. 46, 2877–2881 (1975). [CrossRef]
  12. S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Processing and characterization of ferroelectric BaMgF4 and Bi4Ti3O12 films for nonvolatile memory field-effect transistor (FEMFET) devices,” presented at the IEEE International Symposium on Applied Ferroelectrics, Greenville, S.C., 31 August–2 September, 1992.
  13. J. T. Evans, R. Womack, “An experimental 512-bit nonvolatile memory with ferroelectric storage cell,” IEEE J. Solid-State Circuits SSC-23, 1171–1176 (1988). [CrossRef]
  14. D. Bondurant, F. Gnandinger, “Ferroelectric nonvolatile RAM’s,” IEEE Spectrum 26(7), 30–33 (1989). [CrossRef]
  15. J. F. Scott, C. A. Paz, De Araujo, “Ferroelectric memories,” Science 246, 1400–1405 (1989). [CrossRef] [PubMed]
  16. S. Thakoor, “High-speed optoelectronic response from the edges of lead zirconate titanate thin film capacitors,” Appl. Phys. Lett. 63, 3233–3235 (1993). [CrossRef]
  17. S. Thakoor, “High-speed optoelectronic nondestructive readout from ferroelectric thin film capacitors,” Ferroelectrics 134, 355–363 (1992). [CrossRef]
  18. S. Thakoor, E. Olson, R. H. Nixon, “Optically addressable ferroelectric memory and its applications,” Integrated Ferroelectrics 4, 257–269 (1994). [CrossRef]
  19. M. Lakata, S. Thakoor, “Automated ferroelectric capacitor testing system,” NASA Tech. Briefs 18(2), 30 (1994).
  20. G. A. Soli, B. R. Blaes, M. G. Buehler, K. Ray, Y. S. Lin, “CRRES microelectronic test chip orbital data II,” IEEE Trans. Nucl. Sci. 39, 1840–1845 (1992). [CrossRef]
  21. R. A. Morgan, K. Kojima, T. Mullally, G. D. Guth, M. W. Focht, R. E. Leibenguth, M. Asom, “High-power coherently coupled 8 × 8 vertical-cavity surface-emitting laser array,” Appl. Phys. Lett. 61, 1160–1162 (1992); A. von Lehmen, C. Chang-Hasnain, J. Wullert, L. Carrion, N. Stoffel, L. Florez, J. Harbison, “Independently addressable InGaAs/GaAs vertical-cavity surface-emitting laser arrays,” Electron. Lett. 27, 583–585 (1991); D. Mehuys, D. F. Welch, R. Parke, R. G. Waarts, A. Hardy, D. Scifres, “High-power diffraction-limited emission from monolithically integrated active grating master oscillator power amplifier,” Electron. Lett. 27, 492–494 (1991). [CrossRef]
  22. S. Thakoor, “Enhanced fatigue and retention in ferroelectric thin film memory capacitors by post-top-electrode anneal treatment,” J. Appl. Phys. 75, 5409–5414 (1994). [CrossRef]
  23. S. Thakoor, J. Maserjian, “Photoresponse probe of the space charge distribution in ferroelectric PZT thin film memory capacitors,” J. Vac. Sci. Technol. A 12, 295–299 (1994). [CrossRef]
  24. S. Thakoor, “Noninvasive optical probe of ferroelectric films,” Nasa Tech. Briefs 17(5), 54 (1993).
  25. L. D. Chang, M. Z. Tseng, E. L. Hu, “Epitaxial MgO buffer layers for YBa2Cu3O7-x thin films on GaAs,” Appl. Phys. Lett. 60, 1753–1755 (1992); B. M. Clemens, C. W. Nieh, J. A. Kittl, W. L. Johnson, J. Y. Josefowicz, A. T. Hunter, “Nucleation and growth of YBaCuO on SrTiO3,” Appl. Phys. Lett. 53, 1871–1873 (1988). [CrossRef]
  26. K. Nashimoto, D. K. Fork, “Epitaxial growth of MgO on GaAs (001) for growing epitaxial BaTiO3 thin films by pulsed laser deposition,” Appl. Phys. Lett. 60, 1199–1201 (1992). [CrossRef]
  27. W.-Y. Hsu, R. Raj, “MgO epitaxial thin films on (100) GaAs as a substrate for the growth of oriented PbTiO3,” Appl. Phys. Lett. 60, 3105–3107 (1992); B. S. Kwak, A. Erbil, B. J. Wilkins, J. D. Budai, M. F. Chrisholm, L. A. Boatner, “Strain relaxation by domain formation in epitaxial ferroelectric thin films,” Phys. Rev. Lett. 68, 3733–1873 (1992). [CrossRef] [PubMed]
  28. R. Ramesh, T. Sands, V. G. Keramidas, “Effect of crystal-lographic orientation on ferroelectric properties of PbZr0.2Ti0.8O3 thin films,” Appl. Phys. Lett. 63, 731–733 (1993). [CrossRef]
  29. M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962). [CrossRef]
  30. M. Bass, P. A. Franken, J. F. Ward, “Optical rectification,” Phys. Rev. A 138, 534–542 (1965).
  31. B. N. Morozov, Yu. M. Aivazyan, “Optical rectification and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980); V. M. Nesterenko, B. N. Morozov, “Utilization of optical detection in measuring laser power output,” Sov. J. Quantum Electron. 1, 496–499 (1971). [CrossRef]
  32. S. Thakoor, A. P. Thakoor, “Improved ferroelectric memories with nondestructive readout,” NASA Tech. Briefs 18(11), 40 (1994).
  33. S. Thakoor, “High spatial resolution noninvasive optical evaluation tool,” JPL New Technol. Rep. 19393/8994 (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif., 1994).
  34. S. Thakoor, J. M. Morookian, H. Hemmati, A. P. Thakoor, “Photoresponse from ferroelectric capacitors: optical probing and conditioning of ferroelectric thin-film memories,” presented at the IEEE International Symposium of Applied Ferroelectrics, University Park, Pa., 7–10 August 1994; S. Thakoor, A. P. Thakoor, L. E. Cross, “Optical noninvasive evaluation of ferroelectric films and memory capacitors,” in Materials for Smart Systems, Vol. 360 of MRS Proceedings Series (Materials Research Society, Pittsburgh, Pa., to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited