OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 34, Iss. 18 — Jun. 20, 1995
  • pp: 3257–3266

Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4

Christian Brand, Andreas Winkler, Peter Hess, András Miklós, Zoltán Bozóki, and János Sneider  »View Author Affiliations


Applied Optics, Vol. 34, Issue 18, pp. 3257-3266 (1995)
http://dx.doi.org/10.1364/AO.34.003257


View Full Text Article

Enhanced HTML    Acrobat PDF (199 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the averaging of the photoacoustic signal in the time domain suppressed the outside noise by a factor of 4500 (73 dB). The detection limit for trace gas analysis of ethylene in pure N2 was 2.0 parts in 109 by volume (ppbV) (minimal absorption coefficient αmin = 6.1 × 10−8 cm−1, pulse energy 20 mJ, 1-bar N2), and in environmental air, in which the absorption of other gas components produces a high background signal, we can detect C2H4 to ~180 ppbV. In addition, an alternative experimental technique, in which the maximum signal of the second azimuthal mode was monitored, was tested. To synchronize the sampling rate at the resonance frequency, a resonance tracking system was applied. The detection limit for ethylene measurements was αmin = 9.1 × 10−8 cm−1 for this system.

© 1995 Optical Society of America

History
Original Manuscript: October 5, 1994
Revised Manuscript: January 4, 1995
Published: June 20, 1995

Citation
Christian Brand, Andreas Winkler, Peter Hess, András Miklós, Zoltán Bozóki, and János Sneider, "Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4," Appl. Opt. 34, 3257-3266 (1995)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-34-18-3257

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited