OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 34, Iss. 18 — Jun. 20, 1995
  • pp: 3336–3348

Astigmatic mirror multipass absorption cells for long-path-length spectroscopy

J. B. McManus, P. L. Kebabian, and M. S. Zahniser  »View Author Affiliations

Applied Optics, Vol. 34, Issue 18, pp. 3336-3348 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (1074 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multipass absorption cell, based on an astigmatic variant of the off-axis resonator (Herriott) configuration, has been designed to obtain long path lengths in small volumes. Rotation of the mirror axes is used to obtain an effective adjustability in the two mirror radii. This allows one to compensate for errors in mirror radii that are encountered in manufacture, thereby generating the desired reentrant patterns with less-precise mirrors. A combination of mirror rotation and separation changes can be used to reach a variety of reentrant patterns and path lengths with a fixed set of astigmatic mirrors. The accessible patterns can be determined from trajectories, as a function of rotation and separation, through a general map of reentrant solutions. Desirable patterns for long-path spectroscopy can be chosen on the basis of path length, distance of the closest beam spot from the coupling hole, and tilt insensitivity. We describe the mathematics and analysis methods for the astigmatic cell with mirror rotation and then describe the design and test of prototype cells with this concept. Two cell designs are presented, a cell with 100-m path length in a volume of 3 L and a cell with 36-m path length in a volume of 0.3 L. Tests of low-volume absorption cells that use mirror rotation, designed for fast-flow atmospheric sampling, show the validity and the usefulness of the techniques that we have developed.

© 1995 Optical Society of America

Original Manuscript: July 21, 1994
Revised Manuscript: December 16, 1994
Published: June 20, 1995

J. B. McManus, P. L. Kebabian, and M. S. Zahniser, "Astigmatic mirror multipass absorption cells for long-path-length spectroscopy," Appl. Opt. 34, 3336-3348 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror resonators,” Appl. Opt. 3, 523–526 (1964). [CrossRef]
  2. D. R. Herriott, H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965). [CrossRef]
  3. W. R. Trutna, R. L. Byer, “Multiple-pass Raman gain cell,” Appl. Opt. 19, 301–312 (1980). [CrossRef] [PubMed]
  4. J. Altmann, R. Baumgart, D. C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981). [CrossRef] [PubMed]
  5. D. Kaur, A. M. de Souza, J. Wanna, S. A. Hammad, L. Mercorelli, D. S. Perry, “Multipass cell for molecular beam absorption spectroscopy,” Appl. Opt. 29, 119–124 (1990). [CrossRef] [PubMed]
  6. J. B. McManus, P. L. Kebabian, “Narrow optical interference fringes for certain set-up conditions in multipass absorption cells of the Herriott type,” Appl. Opt. 29, 898–900 (1990). [CrossRef] [PubMed]
  7. J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988). [CrossRef] [PubMed]
  8. J. B. McManus, P. L. Kebabian, C. E. Kolb, “Atmospheric methane measurement instrument using a Zeeman-split He–Ne laser,” Appl. Opt. 28, 5016–5023 (1989). [CrossRef] [PubMed]
  9. J. B. McManus, P. L. Kebabian, C. E. Kolb, “The Aerodyne Research Mobile Methane Monitor,” in Measurement of Atmospheric Gases, H. I. Schiff, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1433, 330–339 (1991).
  10. S. M. Anderson, M. S. Zahniser, “Open-path tunable diode laser absorption for eddy correlation flux measurements of atmospheric trace gases,” in Measurement of Atmospheric Gases, in H. I. Schiff, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1433, 167–178 (1991).
  11. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendal, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–472 (1994). [CrossRef] [PubMed]
  12. P. Werle, F. Slemr, “Signal-to-noise ratio analysis in laser absorption spectrometers using optical multipass cells,” Appl. Opt. 30, 430–434 (1991). [CrossRef] [PubMed]
  13. P. L. Kebabian, “Off-axis cavity absorption cell,” U.S. patent5,291,265 (1March1994).
  14. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942). [CrossRef]
  15. H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966). [CrossRef]
  16. M. R. Schroeder, Number Theory in Science and Communication, Vol. 7 of Springer Series in Information Sciences (Springer-Verlag, Berlin, 1986).
  17. matlab (Math Works, Inc., Natick, Mass., 1990).
  18. R. E. Mickens, Difference Equations (Van Nostrand Reinhold, New York, 1987).
  19. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975), p. 103.
  20. D. D. Nelson, M. S. Zahniser, “Air-broadened linewidth measurements in the ν2 vibrational band of the hydroperoxyl radical,” J. Mol. Spectrosc. 166, 273–279 (1994). [CrossRef]
  21. J. Wormhoudt, M. S. Zahniser, D. D. Nelson, J. B. McManus, R. C. Miake-Lye, C. E. Kolb, “Infrared tunable diode laser diagnostics for aircraft exhaust characterization,” in Laser Applications in Combustion and Combustion Diagnostics II, R. J. Locke, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 2122, 49–60 (1994).
  22. C. E. Kolb, J. C. Wormhoudt, M. S. Zahnizer, “Recent advances in spectroscopic instrumentation for measuring stable gases in the natural environment,” in Methods in Ecology: Trace Gases, P. A. Matson, R. C. Harriss, eds. (Blackwell, Boston), to be published.
  23. D. L. Gonzalez, O. Piro, “Symmetric kicked self oscillators: iterated maps, strange attractors and symmetry of the phase-locking Farey sequence,” Phys. Rev. Lett. 55, 17–19 (1985). [CrossRef] [PubMed]
  24. T. Allen, “On the arithmetic of phase locking: coupled neurons as a lattice on R2,” Physica 6, 305–320 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited